forked from jcjohnson/neural-style
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathneural_dream.lua
295 lines (248 loc) · 8.8 KB
/
neural_dream.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
require 'torch'
require 'nn'
require 'image'
require 'optim'
local iteration_strength = 1
local save_frequency = 1
local loadcaffe_wrap = require 'loadcaffe_wrapper'
--------------------------------------------------------------------------------
local cmd = torch.CmdLine()
-- Basic options
cmd:option('-content_image', 'examples/inputs/tubingen.jpg',
'Content target image')
cmd:option('-image_size', 512, 'Maximum height / width of generated image')
cmd:option('-gpu', -1, 'Zero-indexed ID of the GPU to use; for CPU mode set -gpu = -1')
-- Optimization options
cmd:option('-num_iterations', 1000)
cmd:option('-normalize_gradients', false)
cmd:option('-learning_rate', 1e1)
-- Output options
cmd:option('-print_iter', 50)
cmd:option('-save_iter', 100)
cmd:option('-output_image', 'out.png')
-- Other options
cmd:option('-pooling', 'max', 'max|avg')
cmd:option('-proto_file', 'models/VGG_ILSVRC_19_layers_deploy.prototxt')
cmd:option('-model_file', 'models/VGG_ILSVRC_19_layers.caffemodel')
cmd:option('-backend', 'nn', 'nn|cudnn')
cmd:option('-seed', -1)
cmd:option('-style_layers', 'relu1_1,relu2_1,relu3_1,relu4_1,relu5_1', 'layers for style')
cmd:option('-acid_dose', 1000)
function nn.SpatialConvolutionMM:accGradParameters()
-- nop. not needed by our net
end
local function main(params)
if params.gpu >= 0 then
require 'cutorch'
require 'cunn'
cutorch.setDevice(params.gpu + 1)
else
params.backend = 'nn-cpu'
end
if params.backend == 'cudnn' then
require 'cudnn'
cudnn.SpatialConvolution.accGradParameters = nn.SpatialConvolutionMM.accGradParameters -- ie: nop
end
local cnn = loadcaffe_wrap.load(params.proto_file, params.model_file, params.backend):float()
if params.gpu >= 0 then
cnn:cuda()
end
local content_image = image.load(params.content_image, 3)
content_image = image.scale(content_image, params.image_size, 'bilinear')
local content_image_caffe = preprocess(content_image):float()
if params.gpu >= 0 then
content_image_caffe = content_image_caffe:cuda()
end
local style_layers = params.style_layers:split(",")
-- Set up the network, inserting style and content loss modules
local style_losses = {}
local next_style_idx = 1
local net = nn.Sequential()
for i = 1, #cnn do
if next_style_idx <= #style_layers then
local layer = cnn:get(i)
local name = layer.name
local layer_type = torch.type(layer)
local is_pooling = (layer_type == 'cudnn.SpatialMaxPooling' or layer_type == 'nn.SpatialMaxPooling')
if is_pooling and params.pooling == 'avg' then
assert(layer.padW == 0 and layer.padH == 0)
local kW, kH = layer.kW, layer.kH
local dW, dH = layer.dW, layer.dH
local avg_pool_layer = nn.SpatialAveragePooling(kW, kH, dW, dH):float()
if params.gpu >= 0 then avg_pool_layer:cuda() end
local msg = 'Replacing max pooling at layer %d with average pooling'
print(string.format(msg, i))
net:add(avg_pool_layer)
else
net:add(layer)
end
if name == style_layers[next_style_idx] then
print("Setting up style layer ", i, ":", layer.name)
local gram = GramMatrix():float()
if params.gpu >= 0 then
gram = gram:cuda()
end
local target_features = net:forward(content_image_caffe):clone()
local target = gram:forward(target_features):clone()
target:div(target_features:nElement())
target:mul(params.acid_dose)
local norm = params.normalize_gradients
local loss_module = nn.StyleLoss(iteration_strength, target, norm):float()
if params.gpu >= 0 then
loss_module:cuda()
end
net:add(loss_module)
table.insert(style_losses, loss_module)
next_style_idx = next_style_idx + 1
end
end
end
-- We don't need the base CNN anymore, so clean it up to save memory.
cnn = nil
for i=1,#net.modules do
local module = net.modules[i]
if torch.type(module) == 'nn.SpatialConvolutionMM' then
-- remote these, not used, but uses gpu memory
module.gradWeight = nil
module.gradBias = nil
end
end
collectgarbage()
-- Initialize the image
if params.seed >= 0 then
torch.manualSeed(params.seed)
end
local img = content_image_caffe:clone():float()
if params.gpu >= 0 then
img = img:cuda()
end
-- Run it through the network once to get the proper size for the gradient
-- All the gradients will come from the extra loss modules, so we just pass
-- zeros into the top of the net on the backward pass.
local y = net:forward(img)
local dy = img.new(#y):zero()
-- Declaring this here lets us access it in maybe_print
local optim_state = {
learningRate = params.learning_rate,
}
local function maybe_print(t, loss)
local verbose = (params.print_iter > 0 and t % params.print_iter == 0)
if verbose then
print(string.format('Iteration %d / %d', t, params.num_iterations))
for i, loss_module in ipairs(style_losses) do
print(string.format(' Style %d loss: %f', i, loss_module.loss))
end
print(string.format(' Total loss: %f', loss))
end
end
local function maybe_save(t)
local should_save = params.save_iter > 0 and t % params.save_iter == 0
should_save = should_save or t == params.num_iterations
if should_save then
local disp = deprocess(img:double())
disp = image.minmax{tensor=disp, min=0, max=1}
local filename = build_filename(params.output_image, t)
if t == params.num_iterations then
filename = params.output_image
end
image.save(filename, disp)
end
end
-- Function to evaluate loss and gradient. We run the net forward and
-- backward to get the gradient, and sum up losses from the loss modules.
-- optim.lbfgs internally handles iteration and calls this fucntion many
-- times, so we manually count the number of iterations to handle printing
-- and saving intermediate results.
local num_calls = 0
local function feval(x)
num_calls = num_calls + 1
net:forward(x)
local grad = net:backward(x, dy)
local loss = 0
for _, mod in ipairs(style_losses) do
loss = loss + mod.loss
end
maybe_print(num_calls, loss)
maybe_save(num_calls)
collectgarbage()
-- optim.lbfgs expects a vector for gradients
return loss, grad:view(grad:nElement())
end
-- Run optimization.
for t = 1, params.num_iterations do
local x, losses = optim.adam(feval, img, optim_state)
end
end
function build_filename(output_image, iteration)
local ext = paths.extname(output_image)
local basename = paths.basename(output_image, ext)
if iteration < 10 then
iteration = '0' .. iteration
end
return string.format('%s_%s.%s', basename, iteration, ext)
end
-- Preprocess an image before passing it to a Caffe model.
-- We need to rescale from [0, 1] to [0, 255], convert from RGB to BGR,
-- and subtract the mean pixel.
function preprocess(img)
local mean_pixel = torch.DoubleTensor({103.939, 116.779, 123.68})
local perm = torch.LongTensor{3, 2, 1}
img = img:index(1, perm):mul(256.0)
mean_pixel = mean_pixel:view(3, 1, 1):expandAs(img)
img:add(-1, mean_pixel)
return img
end
-- Undo the above preprocessing.
function deprocess(img)
local mean_pixel = torch.DoubleTensor({103.939, 116.779, 123.68})
mean_pixel = mean_pixel:view(3, 1, 1):expandAs(img)
img = img + mean_pixel
local perm = torch.LongTensor{3, 2, 1}
img = img:index(1, perm):div(256.0)
return img
end
-- Returns a network that computes the CxC Gram matrix from inputs
-- of size C x H x W
function GramMatrix()
local net = nn.Sequential()
net:add(nn.View(-1):setNumInputDims(2))
local concat = nn.ConcatTable()
concat:add(nn.Identity())
concat:add(nn.Identity())
net:add(concat)
net:add(nn.MM(false, true))
return net
end
-- Define an nn Module to compute style loss in-place
local StyleLoss, parent = torch.class('nn.StyleLoss', 'nn.Module')
function StyleLoss:__init(strength, target, normalize)
parent.__init(self)
self.normalize = normalize or false
self.strength = strength
self.target = target
self.loss = 0
self.gram = GramMatrix()
self.G = nil
self.crit = nn.MSECriterion()
end
function StyleLoss:updateOutput(input)
self.G = self.gram:forward(input)
self.G:div(input:nElement())
self.loss = self.crit:forward(self.G, self.target)
-- self.loss = self.loss * self.strength
self.output = input
return self.output
end
function StyleLoss:updateGradInput(input, gradOutput)
local dG = self.crit:backward(self.G, self.target)
dG:div(input:nElement())
self.gradInput = self.gram:backward(input, dG)
if self.normalize then
self.gradInput:div(torch.norm(self.gradInput, 1) + 1e-8)
end
self.gradInput:mul(self.strength)
self.gradInput:add(gradOutput)
return self.gradInput
end
local params = cmd:parse(arg)
main(params)