Skip to content

ictnlp/flexrag

Repository files navigation

Language github license Read the Docs PyPI - Version DOI

[ English | 中文 ]

FlexRAG is a flexible and high-performance framework designed for Retrieval-Augmented Generation (RAG) tasks, offering support for multimodal data, seamless configuration management, and out-of-the-box performance for both research and prototyping.

FlexRAG.mp4

📖 Table of Contents

✨ Key Features

  • Multimodal RAG Support: FlexRAG isn't limited to just text-based Retrieval-Augmented Generation (RAG). It also supports multimodal RAG, opening up a wide range of application possibilities across different media types.
  • Diverse Data Types: FlexRAG enables seamless integration of multiple data formats, including text (e.g., CSV, JSONL), images, documents, web snapshots, and more, giving you flexibility in working with varied data sources.
  • Unified Configuration Management: Leveraging python dataclass and hydra-core, FlexRAG simplifies configuration management, making it easier to handle complex setups and customize your workflow.
  • Out-of-the-Box: With carefully optimized default configurations, FlexRAG delivers solid performance without the need for extensive parameter tuning.
  • High Performance: Built with persistent cache system and asynchronous methods to significantly improve speed and reduce latency in RAG workflows.
  • Research & Development Friendly: Supports multiple development modes and includes a companion repository, flexrag_examples, to help you reproduce various RAG algorithms with ease.
  • Lightweight: Designed with minimal overhead, FlexRAG is efficient and easy to integrate into your project.

📢 News

  • 2025-01-08: We provide wheels on Windows for FlexRAG. You can install FlexRAG via pip on Windows & MacOS now.
  • 2025-01-08: The benchmark of FlexRAG on Single-hop QA tasks is now available. Check out the benchmarks for more details.
  • 2025-01-05: Documentation for FlexRAG is now available. Check out the documentation for more details.

🚀 Getting Started

Step 0. Installation

Install from pip

To install FlexRAG via pip:

pip install flexrag

Install from source

Alternatively, to install from the source:

pip install pybind11

git clone https://github.com/ictnlp/flexrag.git
cd flexrag
pip install ./

You can also install the FlexRAG in editable mode with the -e flag.

Step 1. Prepare the Retriever

Download the Corpus

Before starting you RAG application, you need to download the corpus. In this example, we will use the wikipedia corpus provided by DPR as the corpus. You can download the corpus by running the following command:

# Download the corpus
wget https://dl.fbaipublicfiles.com/dpr/wikipedia_split/psgs_w100.tsv.gz
# Unzip the corpus
gzip -d psgs_w100.tsv.gz

Prepare the Index

After downloading the corpus, you need to build the index for the retriever. If you want to employ the dense retriever, you can simply run the following command to build the index:

CORPUS_PATH='[psgs_w100.tsv]'
CORPUS_FIELDS='[title,text]'
DB_PATH=<path_to_database>

python -m flexrag.entrypoints.prepare_index \
    corpus_path=$CORPUS_PATH \
    saving_fields=$CORPUS_FIELDS \
    retriever_type=dense \
    dense_config.database_path=$DB_PATH \
    dense_config.encode_fields=[text] \
    dense_config.passage_encoder_config.encoder_type=hf \
    dense_config.passage_encoder_config.hf_config.model_path='facebook/contriever' \
    dense_config.passage_encoder_config.hf_config.device_id=[0,1,2,3] \
    dense_config.index_type=faiss \
    dense_config.faiss_config.batch_size=4096 \
    dense_config.faiss_config.log_interval=100000 \
    dense_config.batch_size=4096 \
    dense_config.log_interval=100000 \
    reinit=True

If you want to employ the sparse retriever, you can run the following command to build the index:

CORPUS_PATH='[psgs_w100.tsv]'
CORPUS_FIELDS='[title,text]'
DB_PATH=<path_to_database>

python -m flexrag.entrypoints.prepare_index \
    corpus_path=$CORPUS_PATH \
    saving_fields=$CORPUS_FIELDS \
    retriever_type=bm25s \
    bm25s_config.database_path=$DB_PATH \
    bm25s_config.indexed_fields=[title,text] \
    bm25s_config.method=lucene \
    bm25s_config.batch_size=512 \
    bm25s_config.log_interval=100000 \
    reinit=True

Step 2. Run FlexRAG Assistant

When the index is ready, you can run RAG Assistant provided by FlexRAG. Here is an example of how to run a Modular Assistant.

Run the FlexRAG Example RAG Application with GUI

python -m flexrag.entrypoints.run_interactive \
    assistant_type=modular \
    modular_config.used_fields=[title,text] \
    modular_config.retriever_type=dense \
    modular_config.dense_config.top_k=5 \
    modular_config.dense_config.database_path=${DB_PATH} \
    modular_config.dense_config.query_encoder_config.encoder_type=hf \
    modular_config.dense_config.query_encoder_config.hf_config.model_path='facebook/contriever' \
    modular_config.dense_config.query_encoder_config.hf_config.device_id=[0] \
    modular_config.response_type=short \
    modular_config.generator_type=openai \
    modular_config.openai_config.model_name='gpt-4o-mini' \
    modular_config.openai_config.api_key=$OPENAI_KEY \
    modular_config.do_sample=False

Run the FlexRAG Example Assistants for Knowledge Intensive Tasks

You can evaluate your RAG assistant on several knowledge intensive datasets with great ease. The following command let you evaluate the Modular Assistant with dense retriever on the Natural Questions (NQ) dataset:

OUTPUT_PATH=<path_to_output>
DB_PATH=<path_to_database>
OPENAI_KEY=<your_openai_key>

python -m flexrag.entrypoints.run_assistant \
    data_path=flash_rag/nq/test.jsonl \
    output_path=${OUTPUT_PATH} \
    assistant_type=modular \
    modular_config.used_fields=[title,text] \
    modular_config.retriever_type=dense \
    modular_config.dense_config.top_k=10 \
    modular_config.dense_config.database_path=${DB_PATH} \
    modular_config.dense_config.query_encoder_config.encoder_type=hf \
    modular_config.dense_config.query_encoder_config.hf_config.model_path='facebook/contriever' \
    modular_config.dense_config.query_encoder_config.hf_config.device_id=[0] \
    modular_config.response_type=short \
    modular_config.generator_type=openai \
    modular_config.openai_config.model_name='gpt-4o-mini' \
    modular_config.openai_config.api_key=$OPENAI_KEY \
    modular_config.do_sample=False \
    eval_config.metrics_type=[retrieval_success_rate,generation_f1,generation_em] \
    eval_config.retrieval_success_rate_config.context_preprocess.processor_type=[simplify_answer] \
    eval_config.retrieval_success_rate_config.eval_field=text \
    eval_config.response_preprocess.processor_type=[simplify_answer] \
    log_interval=10

Similarly, you can evaluate the Modular Assistant with sparse retriever on the Natural Questions dataset:

OUTPUT_PATH=<path_to_output>
DB_PATH=<path_to_database>
OPENAI_KEY=<your_openai_key>

python -m flexrag.entrypoints.run_assistant \
    data_path=flash_rag/nq/test.jsonl \
    output_path=${OUTPUT_PATH} \
    assistant_type=modular \
    modular_config.used_fields=[title,text] \
    modular_config.retriever_type=bm25s \
    modular_config.bm25s_config.top_k=10 \
    modular_config.bm25s_config.database_path=${DB_PATH} \
    modular_config.response_type=short \
    modular_config.generator_type=openai \
    modular_config.openai_config.model_name='gpt-4o-mini' \
    modular_config.openai_config.api_key=$OPENAI_KEY \
    modular_config.do_sample=False \
    eval_config.metrics_type=[retrieval_success_rate,generation_f1,generation_em] \
    eval_config.retrieval_success_rate_config.context_preprocess.processor_type=[simplify_answer] \
    eval_config.retrieval_success_rate_config.eval_field=text \
    eval_config.response_preprocess.processor_type=[simplify_answer] \
    log_interval=10

You can also evaluate your own assistant by adding the user_module=<your_module_path> argument to the command.

Build your own RAG Assistant

To build your own RAG assistant, you can create a new Python file and import the necessary FlexRAG modules. Here is an example of how to build a RAG assistant:

from dataclasses import dataclass

from flexrag.assistant import ASSISTANTS, AssistantBase
from flexrag.models import OpenAIGenerator, OpenAIGeneratorConfig
from flexrag.prompt import ChatPrompt, ChatTurn
from flexrag.retriever import DenseRetriever, DenseRetrieverConfig


@dataclass
class SimpleAssistantConfig(DenseRetrieverConfig, OpenAIGeneratorConfig): ...


@ASSISTANTS("simple", config_class=SimpleAssistantConfig)
class SimpleAssistant(AssistantBase):
    def __init__(self, config: SimpleAssistantConfig):
        self.retriever = DenseRetriever(config)
        self.generator = OpenAIGenerator(config)
        return

    def answer(self, question: str) -> str:
        prompt = ChatPrompt()
        context = self.retriever.search(question)[0]
        prompt_str = ""
        for ctx in context:
            prompt_str += f"Question: {question}\nContext: {ctx.data['text']}"
        prompt.update(ChatTurn(role="user", content=prompt_str))
        response = self.generator.chat([prompt])[0][0]
        prompt.update(ChatTurn(role="assistant", content=response))
        return response

After defining the SimpleAssistant class and registering it with the ASSISTANTS decorator, you can run the assistant with the following command:

DB_PATH=<path_to_database>
OPENAI_KEY=<your_openai_key>
DATA_PATH=<path_to_data>
MODULE_PATH=<path_to_simple_assistant_module>

python -m flexrag.entrypoints.run_assistant \
    user_module=${MODULE_PATH} \
    data_path=${DATA_PATH} \
    assistant_type=simple \
    simple_config.model_name='gpt-4o-mini' \
    simple_config.api_key=${OPENAI_KEY} \
    simple_config.database_path=${DB_PATH} \
    simple_config.index_type=faiss \
    simple_config.query_encoder_config.encoder_type=hf \
    simple_config.query_encoder_config.hf_config.model_path='facebook/contriever' \
    simple_config.query_encoder_config.hf_config.device_id=[0] \
    eval_config.metrics_type=[retrieval_success_rate,generation_f1,generation_em] \
    eval_config.retrieval_success_rate_config.eval_field=text \
    eval_config.response_preprocess.processor_type=[simplify_answer] \
    log_interval=10

In flexrag_examples repository, we provide several detailed examples of how to build a RAG assistant.

Run your own RAG Application

In addition to using FlexRAG's built-in Entrypoints to run your RAG Assistant, you can also use FlexRAG to build your own RAG application. The following is an example of how to build a RAG application.

from flexrag.models import HFEncoderConfig, OpenAIGenerator, OpenAIGeneratorConfig
from flexrag.prompt import ChatPrompt, ChatTurn
from flexrag.retriever import DenseRetriever, DenseRetrieverConfig


def main():
    # Initialize the retriever
    retriever_cfg = DenseRetrieverConfig(database_path="path_to_database", top_k=1)
    retriever_cfg.query_encoder_config.encoder_type = "hf"
    retriever_cfg.query_encoder_config.hf_config = HFEncoderConfig(
        model_path="facebook/contriever"
    )
    retriever = DenseRetriever(retriever_cfg)

    # Initialize the generator
    generator = OpenAIGenerator(
        OpenAIGeneratorConfig(
            model_name="gpt-4o-mini", api_key="your_openai_key", do_sample=False
        )
    )

    # Run your RAG application
    prompt = ChatPrompt()
    while True:
        query = input("Please input your query (type `exit` to exit): ")
        if query == "exit":
            break
        context = retriever.search(query)[0]
        prompt_str = ""
        for ctx in context:
            prompt_str += f"Question: {query}\nContext: {ctx.data['text']}"
        prompt.update(ChatTurn(role="user", content=prompt_str))
        response = generator.chat(prompt)
        prompt.update(ChatTurn(role="assistant", content=response))
        print(response)
    return


if __name__ == "__main__":
    main()

For more details on how to build your own RAG application, please refer to the flexrag_examples repository.

🏗️ Architecture

FlexRAG is designed with a modular architecture, allowing you to easily customize and extend the framework to meet your specific needs. The following diagram illustrates the architecture of FlexRAG:

📊 Benchmarks

We have conducted extensive benchmarks using the FlexRAG framework. For more details, please refer to the benchmarks page.

🏷️ License

This repository is licensed under the MIT License. See the LICENSE file for details.

❤️ Acknowledgements

This project benefits from the following open-source projects: