Skip to content

Implementation of Harmonic Convolution by Harmonic Lowering

Notifications You must be signed in to change notification settings

i17oonaka-h/HarmonicLowering_DAP

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

52 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Harmonic Lowering

The official implementation of harmonic convolution by Harmonic Lowering proposed in "Harmonic Lowering for Accelerating Harmonic Convolution for Audio Signals".

Note that this implementation is not the official one of the original paper.

Noise removal using deep audio prior

after running the build below

run deep_audio_prior.ipynb

result

  • Noisy Spectrogram
  • Processed Spectrogram (iter: 10000)

Build

Requirements

Python 3.*
PyTorch newer than v1.0 with CUDA

Install

cd src
python setup.py install

Usage

You can easily replace normal convolution with harmonic convolution.

Harmonic Convolution example

Replace like below. Note that padding_mode is restricted to "zero" and padding[0] (freq axis padding) must be 0. The anchor parameter is default 1. The default of other parameters (stride, padding, dilation, groups, bias, padding_mode) is the same with Conv2d.

# import torch
# conv_module = torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding, dilation, groups, bias, padding_mode)
import harmonic_conv
conv_module = harmonic_conv.SingleHarmonicConv2d(in_channels, out_channels, kernel_size, anchor=1, stride, padding=(0,padding[1]), dilation, groups, bias, padding_mode="zero")

Logarithmic Harmonic Convolution example

Replace like below. out_log_scale (A), in_log_scale (B), radix (C) mean logarithmic function is f(x) = A log_C (Bx). Default radix is e (None).

# import torch
# conv_module = torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding, dilation, groups, bias, padding_mode)
import harmonic_conv
conv_module = harmonic_conv.SingleLogHarmonicConv2d(in_channels, out_channels, kernel_size, out_log_scale=1000, in_log_scale=0.001, radix=None anchor=1, stride, padding=(0,padding[1]), dilation, groups, bias, padding_mode="zero")

Benchmark

Harmonic Lowering is faster computational method of harmonic convolution. Here are benchmarks and the tables of settings.

n Cin Cout S K P
Setting1 1 16 32 (256,256) (7,7) (3,3)
Setting2 1 16 32 (256,256) (5,5) (2,2)
Setting3 1 16 32 (256,256) (3,3) (1,1)
Setting1a 7 16 32 (256,256) (7,7) (3,3)
Setting2a 5 16 32 (256,256) (5,5) (2,2)
Setting3a 3 16 32 (256,256) (3,3) (1,1)

n Cin Cout S K P
Setting4 1 16 32 (512,512) (3,3) (1,1)
Setting5 1 16 32 (256,256) (3,3) (1,1)
Setting6 1 16 32 (128,128) (3,3) (1,1)
Setting7 1 16 32 (64,64) (3,3) (1,1)
Setting8 1 16 32 (32,32) (3,3) (1,1)
Setting9 1 16 32 (16,16) (3,3) (1,1)

These are measured in Nvidia GeForce GTX 1080Ti. Batch Size is 16, dilation=stride=groups=1. The parameters n, Cin, Cout, S, K, P in the above tables means anchor, input channel size, output channel size, input spectrogram (image) size, kernel size, padding size respectively.

Reference

If you use the code, please cite:

    @InProceedings{Hirotoshi_2020_Interspeech,
        author = {Hirotoshi, Takeuchi and Kunio, Kashio and Yasunori, Ohishi and Hiroshi, Saruwatari},
        title = {Harmonic Lowering for Accelerating Harmonic Convolution for Audio Signals},
        booktitle = {Interspeech},
        month = {},
        year = {2020}
    }

License

Check this file.

About

Implementation of Harmonic Convolution by Harmonic Lowering

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 45.3%
  • Jupyter Notebook 37.3%
  • Cuda 13.7%
  • C++ 3.7%