This is the PyTorch implementation for CIEGCL proposed in the paper CIEGCL: Counterfactual Intervention Enhancing Graph Contrastive Learning in Implicit Feedback
We develope our codes in the following environment:
Python version 3.9.12
torch==1.13.1
numpy==1.21.5
pandas=1.3.5
tqdm==4.64.1
-
--topks
Top k for testing recommendation performance. -
--cl_weight
specifies$\lambda_S$ , the regularization weight for CL loss. -
--weight_decay
is$\lambda$ , the L2 regularization weight. -
--temp
specifies$\tau$ , the temperature in CL loss. -
--static_prob
is the edge dropout rate. -
--batch_size
is the train batch size. -
--embedding_dim
is the embedding dimension for embedding based models. -
--n_layers
is the layer number for GNN models.
- Ciao
--cl_weight 0.001
- Movielens-1M
--cl_weight 0.001 --temp 0.2
- Coat
--batch_size 64 --temp 0.5 --weight_decay 0.01