-
Notifications
You must be signed in to change notification settings - Fork 2.3k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[feature] support async ckpt & pin memory cache (#760)
* [feature] support async ckpt * [feature] support pin memory cache * [doc] update readme
- Loading branch information
Showing
8 changed files
with
523 additions
and
127 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,76 @@ | ||
import threading | ||
from typing import Dict, List, Optional | ||
|
||
import torch | ||
|
||
|
||
class PinMemoryCache: | ||
force_dtype: Optional[torch.dtype] = None | ||
min_cache_numel: int = 0 | ||
pre_alloc_numels: List[int] = [] | ||
|
||
def __init__(self): | ||
self.cache: Dict[int, torch.Tensor] = {} | ||
self.output_to_cache: Dict[int, int] = {} | ||
self.cache_to_output: Dict[int, int] = {} | ||
self.lock = threading.Lock() | ||
self.total_cnt = 0 | ||
self.hit_cnt = 0 | ||
|
||
if len(self.pre_alloc_numels) > 0 and self.force_dtype is not None: | ||
for n in self.pre_alloc_numels: | ||
cache_tensor = torch.empty(n, dtype=self.force_dtype, device="cpu", pin_memory=True) | ||
with self.lock: | ||
self.cache[id(cache_tensor)] = cache_tensor | ||
|
||
def get(self, tensor: torch.Tensor) -> torch.Tensor: | ||
"""Receive a cpu tensor and return the corresponding pinned tensor. Note that this only manage memory allocation, doesn't copy content. | ||
Args: | ||
tensor (torch.Tensor): The tensor to be pinned. | ||
Returns: | ||
torch.Tensor: The pinned tensor. | ||
""" | ||
self.total_cnt += 1 | ||
with self.lock: | ||
# find free cache | ||
for cache_id, cache_tensor in self.cache.items(): | ||
if cache_id not in self.cache_to_output and cache_tensor.numel() >= tensor.numel(): | ||
target_cache_tensor = cache_tensor[: tensor.numel()].view(tensor.shape) | ||
out_id = id(target_cache_tensor) | ||
self.output_to_cache[out_id] = cache_id | ||
self.cache_to_output[cache_id] = out_id | ||
self.hit_cnt += 1 | ||
return target_cache_tensor | ||
# no free cache, create a new one | ||
dtype = self.force_dtype if self.force_dtype is not None else tensor.dtype | ||
cache_numel = max(tensor.numel(), self.min_cache_numel) | ||
cache_tensor = torch.empty(cache_numel, dtype=dtype, device="cpu", pin_memory=True) | ||
target_cache_tensor = cache_tensor[: tensor.numel()].view(tensor.shape) | ||
out_id = id(target_cache_tensor) | ||
with self.lock: | ||
self.cache[id(cache_tensor)] = cache_tensor | ||
self.output_to_cache[out_id] = id(cache_tensor) | ||
self.cache_to_output[id(cache_tensor)] = out_id | ||
return target_cache_tensor | ||
|
||
def remove(self, output_tensor: torch.Tensor) -> None: | ||
"""Release corresponding cache tensor. | ||
Args: | ||
output_tensor (torch.Tensor): The tensor to be released. | ||
""" | ||
out_id = id(output_tensor) | ||
with self.lock: | ||
if out_id not in self.output_to_cache: | ||
raise ValueError("Tensor not found in cache.") | ||
cache_id = self.output_to_cache.pop(out_id) | ||
del self.cache_to_output[cache_id] | ||
|
||
def __str__(self): | ||
with self.lock: | ||
num_cached = len(self.cache) | ||
num_used = len(self.output_to_cache) | ||
total_cache_size = sum([v.numel() * v.element_size() for v in self.cache.values()]) | ||
return f"PinMemoryCache(num_cached={num_cached}, num_used={num_used}, total_cache_size={total_cache_size / 1024**3:.2f} GB, hit rate={self.hit_cnt / self.total_cnt:.2f})" |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.