forked from opea-project/GenAIEval
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Support Longbench (opea-project#179)
* add longbench Signed-off-by: Xinyao Wang <[email protected]> * refine readme Signed-off-by: Xinyao Wang <[email protected]> * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci --------- Signed-off-by: Xinyao Wang <[email protected]> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Signed-off-by: Howard Yen <[email protected]>
- Loading branch information
1 parent
b466abd
commit 963c44c
Showing
2 changed files
with
229 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,66 @@ | ||
[LongBench](https://github.com/THUDM/LongBench) is the benchmark for bilingual, multitask, and comprehensive assessment of long context understanding capabilities of large language models. LongBench includes different languages (Chinese and English) to provide a more comprehensive evaluation of the large models' multilingual capabilities on long contexts. In addition, LongBench is composed of six major categories and twenty one different tasks, covering key long-text application scenarios such as single-document QA, multi-document QA, summarization, few-shot learning, synthetic tasks and code completion. | ||
|
||
In this guideline, we evaluate LongBench dataset with OPEA services on Intel hardwares. | ||
|
||
# 🚀 QuickStart | ||
|
||
## Installation | ||
|
||
``` | ||
pip install ../../../requirements.txt | ||
``` | ||
|
||
## Launch a LLM Service | ||
|
||
To setup a LLM model, we can use [tgi-gaudi](https://github.com/huggingface/tgi-gaudi) or [OPEA microservices](https://github.com/opea-project/GenAIComps/tree/main/comps/llms/text-generation) to launch a service. | ||
|
||
### Example 1: TGI | ||
For example, the follow command is to setup the [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf) model on Gaudi: | ||
|
||
``` | ||
model=meta-llama/Llama-2-7b-hf | ||
hf_token=YOUR_ACCESS_TOKEN | ||
volume=$PWD/data # share a volume with the Docker container to avoid downloading weights every run | ||
docker run -p 8080:80 -v $volume:/data --runtime=habana -e HABANA_VISIBLE_DEVICES=all \ | ||
-e OMPI_MCA_btl_vader_single_copy_mechanism=none -e HF_TOKEN=$hf_token \ | ||
-e ENABLE_HPU_GRAPH=true -e LIMIT_HPU_GRAPH=true -e USE_FLASH_ATTENTION=true \ | ||
-e FLASH_ATTENTION_RECOMPUTE=true --cap-add=sys_nice --ipc=host \ | ||
ghcr.io/huggingface/tgi-gaudi:2.0.5 --model-id $model --max-input-tokens 1024 \ | ||
--max-total-tokens 2048 | ||
``` | ||
|
||
### Example 2: OPEA LLM | ||
You can also set up a service with OPEA microservices. | ||
|
||
For example, you can refer to [native LLM](https://github.com/opea-project/GenAIComps/tree/main/comps/llms/text-generation/native/langchain) for deployment on native Gaudi without any serving framework. | ||
|
||
## Predict | ||
Please set up the environment variables first. | ||
``` | ||
export ENDPOINT="http://{host_ip}:8080/generate" # your LLM serving endpoint | ||
export LLM_MODEL="meta-llama/Llama-2-7b-hf" | ||
export BACKEND="tgi" # "tgi" or "llm" | ||
export DATASET="narrativeqa" # can refer to https://github.com/THUDM/LongBench/blob/main/task.md for full list | ||
export MAX_INPUT_LENGTH=2048 # specify the max input length according to llm services | ||
``` | ||
Then get the prediction on the dataset. | ||
``` | ||
python pred.py \ | ||
--endpoint ${ENDPOINT} \ | ||
--model_name ${LLM_MODEL} \ | ||
--backend ${BACKEND} \ | ||
--dataset ${DATASET} \ | ||
--max_input_length ${MAX_INPUT_LENGTH} | ||
``` | ||
The prediction will be saved to "pred/{LLM_MODEL}/{DATASET.jsonl}". | ||
|
||
## Evaluate | ||
Evaluate the prediction with LongBench metrics. | ||
``` | ||
git clone https://github.com/THUDM/LongBench | ||
cd LongBench | ||
pip install -r requirements.txt | ||
python eval.py --model ${LLM_MODEL} | ||
``` | ||
Then evaluated result will be saved to "pred/{LLM_MODEL}/{result.jsonl}". |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,163 @@ | ||
# Copyright (C) 2024 Intel Corporation | ||
# SPDX-License-Identifier: Apache-2.0 | ||
|
||
import argparse | ||
import json | ||
import os | ||
import random | ||
import time | ||
|
||
import numpy as np | ||
import requests | ||
from datasets import load_dataset | ||
from requests.exceptions import RequestException | ||
from tqdm import tqdm | ||
from transformers import AutoTokenizer | ||
|
||
|
||
def parse_args(args=None): | ||
parser = argparse.ArgumentParser() | ||
parser.add_argument("--endpoint", type=str, required=True) | ||
parser.add_argument("--model_name", type=str, required=True) | ||
parser.add_argument("--backend", type=str, default="tgi", choices=["tgi", "llm"]) | ||
parser.add_argument( | ||
"--dataset", type=str, help="give dataset name, if not given, will evaluate on all datasets", default=None | ||
) | ||
parser.add_argument("--e", action="store_true", help="Evaluate on LongBench-E") | ||
parser.add_argument("--max_input_length", type=int, default=2048, help="max input length") | ||
return parser.parse_args(args) | ||
|
||
|
||
def get_query(backend, prompt, max_new_length): | ||
header = {"Content-Type": "application/json"} | ||
query = { | ||
"tgi": {"inputs": prompt, "parameters": {"max_new_tokens": max_new_length, "do_sample": False}}, | ||
"llm": {"query": prompt, "max_tokens": max_new_length}, | ||
} | ||
return header, query[backend] | ||
|
||
|
||
def get_pred( | ||
data, dataset_name, backend, endpoint, model_name, max_input_length, max_new_length, prompt_format, out_path | ||
): | ||
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) | ||
for json_obj in tqdm(data): | ||
prompt = prompt_format.format(**json_obj) | ||
|
||
# truncate to fit max_input_length (we suggest truncate in the middle, since the left and right side may contain crucial instructions) | ||
tokenized_prompt = tokenizer(prompt, truncation=False, return_tensors="pt").input_ids[0] | ||
if len(tokenized_prompt) > max_input_length: | ||
half = int(max_input_length / 2) | ||
prompt = tokenizer.decode(tokenized_prompt[:half], skip_special_tokens=True) + tokenizer.decode( | ||
tokenized_prompt[-half:], skip_special_tokens=True | ||
) | ||
|
||
header, query = get_query(backend, prompt, max_new_length) | ||
print("query: ", query) | ||
try: | ||
start_time = time.perf_counter() | ||
res = requests.post(endpoint, headers=header, json=query) | ||
res.raise_for_status() | ||
res = res.json() | ||
cost = time.perf_counter() - start_time | ||
except RequestException as e: | ||
raise Exception(f"An unexpected error occurred: {str(e)}") | ||
|
||
if backend == "tgi": | ||
result = res["generated_text"] | ||
else: | ||
result = res["text"] | ||
print("result: ", result) | ||
with open(out_path, "a", encoding="utf-8") as f: | ||
json.dump( | ||
{ | ||
"pred": result, | ||
"answers": json_obj["answers"], | ||
"all_classes": json_obj["all_classes"], | ||
"length": json_obj["length"], | ||
}, | ||
f, | ||
ensure_ascii=False, | ||
) | ||
f.write("\n") | ||
|
||
|
||
if __name__ == "__main__": | ||
args = parse_args() | ||
endpoint = args.endpoint | ||
model_name = args.model_name | ||
backend = args.backend | ||
dataset = args.dataset | ||
max_input_length = args.max_input_length | ||
|
||
dataset_list = [ | ||
"narrativeqa", | ||
"qasper", | ||
"multifieldqa_en", | ||
"multifieldqa_zh", | ||
"hotpotqa", | ||
"2wikimqa", | ||
"musique", | ||
"dureader", | ||
"gov_report", | ||
"qmsum", | ||
"multi_news", | ||
"vcsum", | ||
"trec", | ||
"triviaqa", | ||
"samsum", | ||
"lsht", | ||
"passage_count", | ||
"passage_retrieval_en", | ||
"passage_retrieval_zh", | ||
"lcc", | ||
"repobench-p", | ||
] | ||
datasets_e_list = [ | ||
"qasper", | ||
"multifieldqa_en", | ||
"hotpotqa", | ||
"2wikimqa", | ||
"gov_report", | ||
"multi_news", | ||
"trec", | ||
"triviaqa", | ||
"samsum", | ||
"passage_count", | ||
"passage_retrieval_en", | ||
"lcc", | ||
"repobench-p", | ||
] | ||
if args.e: | ||
if dataset is not None: | ||
if dataset in datasets_e_list: | ||
datasets = [dataset] | ||
else: | ||
raise NotImplementedError(f"{dataset} are not supported in LongBench-e dataset list: {datasets_e_list}") | ||
else: | ||
datasets = datasets_e_list | ||
if not os.path.exists(f"pred_e/{model_name}"): | ||
os.makedirs(f"pred_e/{model_name}") | ||
else: | ||
datasets = [dataset] if dataset is not None else dataset_list | ||
if not os.path.exists(f"pred/{model_name}"): | ||
os.makedirs(f"pred/{model_name}") | ||
|
||
for dataset in datasets: | ||
if args.e: | ||
out_path = f"pred_e/{model_name}/{dataset}.jsonl" | ||
data = load_dataset("THUDM/LongBench", f"{dataset}_e", split="test") | ||
else: | ||
out_path = f"pred/{model_name}/{dataset}.jsonl" | ||
data = load_dataset("THUDM/LongBench", dataset, split="test") | ||
|
||
# we design specific prompt format and max generation length for each task, feel free to modify them to optimize model output | ||
dataset2prompt = json.load(open("config/dataset2prompt.json", "r")) | ||
dataset2maxlen = json.load(open("config/dataset2maxlen.json", "r")) | ||
prompt_format = dataset2prompt[dataset] | ||
max_new_length = dataset2maxlen[dataset] | ||
|
||
data_all = [data_sample for data_sample in data] | ||
get_pred( | ||
data_all, dataset, backend, endpoint, model_name, max_input_length, max_new_length, prompt_format, out_path | ||
) |