课堂专注度及考试作弊系统、课堂动态点名,情绪识别、表情识别和人脸识别结合
推荐使用下方的扩展项目,我们提供了完整的部署流程和权重链接。
课堂专注度+表情识别
转头(probe)+低头(peep)+传递物品(passing)
侧面的传递物品识别
1. Halpe dataset (136 keypoints)
Model | Backbone | Detector | Input Size | AP | Speed | Download | Config | Training Log |
---|---|---|---|---|---|---|---|---|
Fast Pose | ResNet50 | YOLOv3 | 256x192 | 69.0 | 3.54 iter/s | Google Baidu | cfg | log |
- 放到detection_system/checkpoints
Currently the best performance tracking model. Paper coming soon.
Download human reid model and place it into AlphaPose/trackers/weights/
.
Then simply run alphapose with additional flag --pose_track
You can try different person reid model by modifing cfg.arch
and cfg.loadmodel
in ./trackers/tracker_cfg.py
.
If you want to train your own reid model, please refer to this project
Download the object detection model manually: yolov3-spp.weights(Google Drive | Baidu pan). Place it into detector/yolo/data
.
- 放到face_recog/weights文件夹下
百度云 提取码:rwtl
人脸识别:dlib_face_recognition_resnet_model_v1.dat
- detection_system/face_recog/weights
人脸对齐:shape_predictor_68_face_landmarks.dat
- detection_system/face_recog/weights
作弊动作分类器:cheating_detector_rfc_kp.pkl
- detection_system/weights
python setup.py build develop
将detection_system设置为source root
使用摄像头运行程序
python demo_inference.py --vis --webcam 0