Skip to content

hbusra/lncMachine

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

12 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

lncMachine

LncRNA prediction tool for plants

lncMachine requires python3 or newer.

Prediction models was constructed using the sklearn module in version 0.22. Prebuilt models were provided as long as the sklearm module (version 0.22) is used.\n

required python packages:
	Bio
	optparse
	numpy
	pandas
	sklearn
	pickle

Program Usage

Options:
--version             show program's version number and exit  
-h, --help            show this help message and exit
-c CODING_FILE, --cod=CODING_FILE
		      Coding sequences in fasta format
-n NONCODING_FILE, --noncod=NONCODING_FILE
		      Noncoding sequences in fasta format. Required for
		      training.
--train               Train using coding and noncoding datasets
		      [default:RandomForestClassifier(random_state=1,
		      n_jobs=-1)]. Both -n and -c required.
--all                 Build models for all nine algorithms.
--model=PREDICTION_MODEL
		      Prediction model in .sav format [optional]
--algorithm=ALGORITHM
		      Use specified machine learning prediction algorihm
		      i.e. RandomForestClassifier(random_state=1, n_jobs=-1)
-i ICSV               Tab separated CSV file containing class and feature
		      information [optional]
-o OUTPUT_FILE, --out=OUTPUT_FILE
		      Output file name for classification (1 for coding and
		      0 for noncoding) and the features
		      [default:'features.csv'].

To build a Random Forest prediction model from a coding and a noncoding data (FASTA):

python3 lncMachine.py -c coding.fasta -n noncoding.fasta --train 

To build prediction models using nine machine learning algorithms:

python3 lncMachine.py -c coding.fasta -n noncoding.fasta --train --all

To build a Random Forest prediction model from a CSV file containing at least two classes:

python3 lncMachine.py -i features.csv --train

To predict coding probability from a FASTA file:

python3 lncMachine.py -c coding.fasta --model prebuiltin_model.sav