-
Notifications
You must be signed in to change notification settings - Fork 202
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
pg-vector support based on Asyncpg #41
Open
Dorbmon
wants to merge
10
commits into
gusye1234:main
Choose a base branch
from
Dorbmon:main
base: main
Could not load branches
Branch not found: {{ refName }}
Loading
Could not load tags
Nothing to show
Loading
Are you sure you want to change the base?
Some commits from the old base branch may be removed from the timeline,
and old review comments may become outdated.
Open
Changes from all commits
Commits
Show all changes
10 commits
Select commit
Hold shift + click to select a range
56fdfb8
implement asyncpg support for vector db
Dorbmon ad99ba9
use nest_asyncio
Dorbmon 0e9da79
make ci happy
Dorbmon c4a6e93
fix
Dorbmon 93366a2
use env to get connection string
Dorbmon 3753c7b
fix
Dorbmon c1f30db
fix argument
Dorbmon b6b79d6
fix
Dorbmon aa2e9f0
fix
Dorbmon 770e248
fix
Dorbmon File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,129 @@ | ||
import os | ||
from openai import AsyncOpenAI | ||
from dotenv import load_dotenv | ||
import logging | ||
import numpy as np | ||
from sentence_transformers import SentenceTransformer | ||
from nano_graphrag import GraphRAG, QueryParam | ||
from nano_graphrag._llm import gpt_4o_mini_complete | ||
from nano_graphrag.storage.asyncpg import AsyncPGVectorStorage | ||
from nano_graphrag.base import BaseKVStorage | ||
from nano_graphrag._utils import compute_args_hash, wrap_embedding_func_with_attrs | ||
|
||
logging.basicConfig(level=logging.WARNING) | ||
logging.getLogger("nano-graphrag").setLevel(logging.DEBUG) | ||
|
||
WORKING_DIR = "nano_graphrag_cache_using_pg_as_vectorDB" | ||
dsn = os.environ.get("POSTGRES_CONNECTION_STR") | ||
load_dotenv() | ||
|
||
|
||
EMBED_MODEL = SentenceTransformer( | ||
"sentence-transformers/all-MiniLM-L6-v2", cache_folder=WORKING_DIR, device="cpu" | ||
) | ||
|
||
|
||
@wrap_embedding_func_with_attrs( | ||
embedding_dim=EMBED_MODEL.get_sentence_embedding_dimension(), | ||
max_token_size=EMBED_MODEL.max_seq_length, | ||
) | ||
async def local_embedding(texts: list[str]) -> np.ndarray: | ||
return EMBED_MODEL.encode(texts, normalize_embeddings=True) | ||
|
||
|
||
async def deepseepk_model_if_cache( | ||
prompt, model: str = "deepseek-chat", system_prompt=None, history_messages=[], **kwargs | ||
) -> str: | ||
openai_async_client = AsyncOpenAI( | ||
api_key=os.environ.get("DEEPSEEK_API_KEY"), base_url="https://api.deepseek.com" | ||
) | ||
messages = [] | ||
if system_prompt: | ||
messages.append({"role": "system", "content": system_prompt}) | ||
|
||
# Get the cached response if having------------------- | ||
hashing_kv: BaseKVStorage = kwargs.pop("hashing_kv", None) | ||
messages.extend(history_messages) | ||
messages.append({"role": "user", "content": prompt}) | ||
if hashing_kv is not None: | ||
args_hash = compute_args_hash(model, messages) | ||
if_cache_return = await hashing_kv.get_by_id(args_hash) | ||
if if_cache_return is not None: | ||
return if_cache_return["return"] | ||
# ----------------------------------------------------- | ||
|
||
response = await openai_async_client.chat.completions.create( | ||
model=model, messages=messages, **kwargs | ||
) | ||
|
||
# Cache the response if having------------------- | ||
if hashing_kv is not None: | ||
await hashing_kv.upsert( | ||
{args_hash: {"return": response.choices[0].message.content, "model": model}} | ||
) | ||
# ----------------------------------------------------- | ||
return response.choices[0].message.content | ||
|
||
|
||
|
||
def remove_if_exist(file): | ||
if os.path.exists(file): | ||
os.remove(file) | ||
|
||
|
||
def insert(): | ||
from time import time | ||
|
||
with open("./tests/mock_data.txt", encoding="utf-8-sig") as f: | ||
FAKE_TEXT = f.read() | ||
|
||
remove_if_exist(f"{WORKING_DIR}/vdb_entities.json") | ||
remove_if_exist(f"{WORKING_DIR}/kv_store_full_docs.json") | ||
remove_if_exist(f"{WORKING_DIR}/kv_store_text_chunks.json") | ||
remove_if_exist(f"{WORKING_DIR}/kv_store_community_reports.json") | ||
remove_if_exist(f"{WORKING_DIR}/graph_chunk_entity_relation.graphml") | ||
rag = GraphRAG( | ||
working_dir=WORKING_DIR, | ||
enable_llm_cache=True, | ||
vector_db_storage_cls=AsyncPGVectorStorage, | ||
vector_db_storage_cls_kwargs={"dsn": dsn}, | ||
best_model_max_async=10, | ||
cheap_model_max_async=10, | ||
best_model_func=deepseepk_model_if_cache, | ||
cheap_model_func=deepseepk_model_if_cache, | ||
embedding_func=local_embedding | ||
) | ||
start = time() | ||
rag.insert(FAKE_TEXT) | ||
print("indexing time:", time() - start) | ||
|
||
|
||
def query(): | ||
rag = GraphRAG( | ||
working_dir=WORKING_DIR, | ||
enable_llm_cache=True, | ||
vector_db_storage_cls=AsyncPGVectorStorage, | ||
vector_db_storage_cls_kwargs={"dsn": dsn}, | ||
best_model_max_token_size=8196, | ||
cheap_model_max_token_size=8196, | ||
best_model_max_async=4, | ||
cheap_model_max_async=4, | ||
best_model_func=gpt_4o_mini_complete, | ||
cheap_model_func=gpt_4o_mini_complete, | ||
embedding_func=local_embedding | ||
) | ||
print( | ||
rag.query( | ||
"What are the top themes in this story?", param=QueryParam(mode="global") | ||
) | ||
) | ||
print( | ||
rag.query( | ||
"What are the top themes in this story?", param=QueryParam(mode="local") | ||
) | ||
) | ||
|
||
|
||
if __name__ == "__main__": | ||
insert() | ||
query() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,106 @@ | ||
from nano_graphrag._storage import BaseVectorStorage | ||
import asyncpg | ||
import asyncio | ||
from contextlib import asynccontextmanager | ||
from nano_graphrag._utils import logger | ||
from pgvector.asyncpg import register_vector | ||
from nano_graphrag.graphrag import always_get_an_event_loop | ||
import numpy as np | ||
import json | ||
from dataclasses import dataclass | ||
|
||
import nest_asyncio | ||
nest_asyncio.apply() | ||
|
||
@dataclass | ||
class AsyncPGVectorStorage(BaseVectorStorage): | ||
table_name_generator: callable = None | ||
conn_fetcher: callable = None | ||
cosine_better_than_threshold: float = 0.2 | ||
dsn = None | ||
def __post_init__(self): | ||
params = self.global_config.get("vector_db_storage_cls_kwargs", {}) | ||
dsn = params.get("dsn", None) | ||
conn_fetcher = params.get("conn_fetcher", None) | ||
table_name_generator = params.get("table_name_generator", None) | ||
self.dsn = dsn | ||
self.conn_fetcher = conn_fetcher | ||
assert self.dsn != None or self.conn_fetcher != None, "Must provide either dsn or conn_fetcher" | ||
if self.dsn: | ||
self.conn_fetcher = self.__get_conn | ||
if not table_name_generator: | ||
self.table_name_generator = lambda working_dir, namespace: f'{working_dir}_{namespace}_vdb' | ||
self._table_name = self.table_name_generator(self.global_config["working_dir"], self.namespace) | ||
self._max_batch_size = self.global_config["embedding_batch_num"] | ||
|
||
self.cosine_better_than_threshold = self.global_config.get( | ||
"query_better_than_threshold", self.cosine_better_than_threshold | ||
) | ||
loop = always_get_an_event_loop() | ||
loop.run_until_complete(self._secure_table()) | ||
@asynccontextmanager | ||
async def __get_conn(self, vector_register=True): | ||
try: | ||
conn: asyncpg.Connection = await asyncpg.connect(self.dsn) | ||
if vector_register: | ||
await register_vector(conn) | ||
yield conn | ||
finally: | ||
await conn.close() | ||
async def _secure_table(self): | ||
async with self.conn_fetcher(vector_register=False) as conn: | ||
conn: asyncpg.Connection | ||
await conn.execute('CREATE EXTENSION IF NOT EXISTS vector') | ||
result = await conn.fetch( | ||
"SELECT EXISTS (SELECT 1 FROM information_schema.tables WHERE table_name = $1)", self._table_name) | ||
table_exists = result[0]['exists'] | ||
if not table_exists: | ||
# create the table | ||
await conn.execute(f'CREATE TABLE {self._table_name} (id text PRIMARY KEY, embedding vector({self.embedding_func.embedding_dim}), data jsonb)') | ||
await conn.execute(f'CREATE INDEX ON {self._table_name} USING hnsw (embedding vector_cosine_ops)') | ||
async def query(self, query: str, top_k: int) -> list[dict]: | ||
embedding = await self.embedding_func([query]) | ||
embedding = embedding[0] | ||
async with self.conn_fetcher() as conn: | ||
|
||
result = await conn.fetch(f'SELECT embedding <=> $1 as similarity, id, embedding, data FROM {self._table_name} WHERE embedding <=> $1 > $3 ORDER BY embedding <=> $1 DESC LIMIT $2', embedding, top_k, self.cosine_better_than_threshold) | ||
|
||
rows = [] | ||
for row in result: | ||
data = json.loads(row['data']) | ||
rows.append({ | ||
**data, | ||
'id': row['id'], | ||
'distance': 1 - row['similarity'], | ||
'similarity': row['similarity'] | ||
}) | ||
return rows | ||
async def upsert(self, data: dict[str, dict]): | ||
logger.info(f"Inserting {len(data)} vectors to {self.namespace}") | ||
if not len(data): | ||
logger.warning("You insert an empty data to vector DB") | ||
return [] | ||
list_data = [ | ||
{ | ||
"__id__": k, | ||
**{k1: v1 for k1, v1 in v.items() if k1 in self.meta_fields}, | ||
} | ||
for k, v in data.items() | ||
] | ||
contents = [v["content"] for v in data.values()] | ||
batches = [ | ||
contents[i : i + self._max_batch_size] | ||
for i in range(0, len(contents), self._max_batch_size) | ||
] | ||
embeddings_list = await asyncio.gather( | ||
*[self.embedding_func(batch) for batch in batches] | ||
) | ||
embeddings_list = np.concatenate(embeddings_list) | ||
insert_rows = [] | ||
for i, d in enumerate(list_data): | ||
row = [d["__id__"], embeddings_list[i], json.dumps(d)] | ||
insert_rows.append(row) | ||
async with self.conn_fetcher() as conn: | ||
conn: asyncpg.Connection | ||
stmt = f"INSERT INTO {self._table_name} (id, embedding, data) VALUES ($1, $2, $3) ON CONFLICT (id) DO UPDATE SET embedding = $2, data = $3" | ||
return await conn.executemany(stmt, insert_rows) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -7,3 +7,6 @@ hnswlib | |
xxhash | ||
tenacity | ||
dspy-ai | ||
pgvector==0.3.3 | ||
asyncpg==0.29.0 | ||
nest_asyncio==1.6.0 |
Oops, something went wrong.
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Why use nest_asyncio here? We have
nest_asyncio
at beginning then remove it. It seems like will cause some deadlock casesThere was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
The reason is that we seem to lack an asynchronous initialization function. The entire function runs in an asynchronous environment, and in order to run in a nested asynchronous environment, I used nest_asyncio.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Yeah... it could be problematic I think. Do we have to use nest-async to run pg-vector storage?
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
I need to ensure that the plugin is created correctly, along with the corresponding table. Since the asyncpg library only supports asynchronous operations, I need to obtain a loop for initialization.