🇨🇳中文 | 🌐English | 📖文档/Docs | 🤖模型/Models
Text2vec: Text to Vector, Get Sentence Embeddings. 文本向量化,把文本(包括词、句子、段落)表征为向量矩阵。
text2vec实现了Word2Vec、RankBM25、BERT、Sentence-BERT、CoSENT等多种文本表征、文本相似度计算模型,并在文本语义匹配(相似度计算)任务上比较了各模型的效果。
[2023/06/22] v1.2.2版本: 发布了多语言匹配模型shibing624/text2vec-base-multilingual,用CoSENT方法训练,基于sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
用人工挑选后的多语言STS数据集shibing624/nli-zh-all/text2vec-base-multilingual-dataset训练得到,并在中英文测试集评估相对于原模型效果有提升,详见Release-v1.2.2
[2023/06/19] v1.2.1版本: 更新了中文匹配模型shibing624/text2vec-base-chinese-nli
为新版shibing624/text2vec-base-chinese-sentence,针对CoSENT的loss计算对排序敏感特点,人工挑选并整理出高质量的有相关性排序的STS数据集shibing624/nli-zh-all/text2vec-base-chinese-sentence-dataset,在各评估集表现相对之前有提升;发布了适用于s2p的中文匹配模型shibing624/text2vec-base-chinese-paraphrase,详见Release-v1.2.1
[2023/06/15] v1.2.0版本: 发布了中文匹配模型shibing624/text2vec-base-chinese-nli,基于nghuyong/ernie-3.0-base-zh
模型,使用了中文NLI数据集shibing624/nli_zh全部语料训练的CoSENT文本匹配模型,在各评估集表现提升明显,详见Release-v1.2.0
[2022/03/12] v1.1.4版本: 发布了中文匹配模型shibing624/text2vec-base-chinese,基于中文STS训练集训练的CoSENT匹配模型。详见Release-v1.1.4
Guide
- Word2Vec:通过腾讯AI Lab开源的大规模高质量中文词向量数据(800万中文词轻量版) (文件名:light_Tencent_AILab_ChineseEmbedding.bin 密码: tawe)实现词向量检索,本项目实现了句子(词向量求平均)的word2vec向量表示
- SBERT(Sentence-BERT):权衡性能和效率的句向量表示模型,训练时通过有监督训练上层分类函数,文本匹配预测时直接句子向量做余弦,本项目基于PyTorch复现了Sentence-BERT模型的训练和预测
- CoSENT(Cosine Sentence):CoSENT模型提出了一种排序的损失函数,使训练过程更贴近预测,模型收敛速度和效果比Sentence-BERT更好,本项目基于PyTorch实现了CoSENT模型的训练和预测
详细文本向量表示方法见wiki: 文本向量表示方法
文本匹配
Arch | BaseModel | Model | English-STS-B |
---|---|---|---|
GloVe | glove | Avg_word_embeddings_glove_6B_300d | 61.77 |
BERT | bert-base-uncased | BERT-base-cls | 20.29 |
BERT | bert-base-uncased | BERT-base-first_last_avg | 59.04 |
BERT | bert-base-uncased | BERT-base-first_last_avg-whiten(NLI) | 63.65 |
SBERT | sentence-transformers/bert-base-nli-mean-tokens | SBERT-base-nli-cls | 73.65 |
SBERT | sentence-transformers/bert-base-nli-mean-tokens | SBERT-base-nli-first_last_avg | 77.96 |
CoSENT | bert-base-uncased | CoSENT-base-first_last_avg | 69.93 |
CoSENT | sentence-transformers/bert-base-nli-mean-tokens | CoSENT-base-nli-first_last_avg | 79.68 |
CoSENT | sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 | shibing624/text2vec-base-multilingual | 80.12 |
Arch | BaseModel | Model | ATEC | BQ | LCQMC | PAWSX | STS-B | Avg |
---|---|---|---|---|---|---|---|---|
SBERT | bert-base-chinese | SBERT-bert-base | 46.36 | 70.36 | 78.72 | 46.86 | 66.41 | 61.74 |
SBERT | hfl/chinese-macbert-base | SBERT-macbert-base | 47.28 | 68.63 | 79.42 | 55.59 | 64.82 | 63.15 |
SBERT | hfl/chinese-roberta-wwm-ext | SBERT-roberta-ext | 48.29 | 69.99 | 79.22 | 44.10 | 72.42 | 62.80 |
CoSENT | bert-base-chinese | CoSENT-bert-base | 49.74 | 72.38 | 78.69 | 60.00 | 79.27 | 68.01 |
CoSENT | hfl/chinese-macbert-base | CoSENT-macbert-base | 50.39 | 72.93 | 79.17 | 60.86 | 79.30 | 68.53 |
CoSENT | hfl/chinese-roberta-wwm-ext | CoSENT-roberta-ext | 50.81 | 71.45 | 79.31 | 61.56 | 79.96 | 68.61 |
说明:
- 结果评测指标:spearman系数
- 为评测模型能力,结果均只用该数据集的train训练,在test上评估得到的表现,没用外部数据
SBERT-macbert-base
模型,是用SBert方法训练,运行examples/training_sup_text_matching_model.py代码可训练模型sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
模型是用SBert训练,是paraphrase-MiniLM-L12-v2
模型的多语言版本,支持中文、英文等
- 本项目release模型的中文匹配评测结果:
Arch | BaseModel | Model | ATEC | BQ | LCQMC | PAWSX | STS-B | SOHU-dd | SOHU-dc | Avg | QPS |
---|---|---|---|---|---|---|---|---|---|---|---|
Word2Vec | word2vec | w2v-light-tencent-chinese | 20.00 | 31.49 | 59.46 | 2.57 | 55.78 | 55.04 | 20.70 | 35.03 | 23769 |
SBERT | xlm-roberta-base | sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 | 18.42 | 38.52 | 63.96 | 10.14 | 78.90 | 63.01 | 52.28 | 46.46 | 3138 |
CoSENT | hfl/chinese-macbert-base | shibing624/text2vec-base-chinese | 31.93 | 42.67 | 70.16 | 17.21 | 79.30 | 70.27 | 50.42 | 51.61 | 3008 |
CoSENT | hfl/chinese-lert-large | GanymedeNil/text2vec-large-chinese | 32.61 | 44.59 | 69.30 | 14.51 | 79.44 | 73.01 | 59.04 | 53.12 | 2092 |
CoSENT | nghuyong/ernie-3.0-base-zh | shibing624/text2vec-base-chinese-sentence | 43.37 | 61.43 | 73.48 | 38.90 | 78.25 | 70.60 | 53.08 | 59.87 | 3089 |
CoSENT | nghuyong/ernie-3.0-base-zh | shibing624/text2vec-base-chinese-paraphrase | 44.89 | 63.58 | 74.24 | 40.90 | 78.93 | 76.70 | 63.30 | 63.08 | 3066 |
CoSENT | sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 | shibing624/text2vec-base-multilingual | 32.39 | 50.33 | 65.64 | 32.56 | 74.45 | 68.88 | 51.17 | 53.67 | 3138 |
说明:
- 结果评测指标:spearman系数
shibing624/text2vec-base-chinese
模型,是用CoSENT方法训练,基于hfl/chinese-macbert-base
在中文STS-B数据训练得到,并在中文STS-B测试集评估达到较好效果,运行examples/training_sup_text_matching_model.py代码可训练模型,模型文件已经上传HF model hub,中文通用语义匹配任务推荐使用shibing624/text2vec-base-chinese-sentence
模型,是用CoSENT方法训练,基于nghuyong/ernie-3.0-base-zh
用人工挑选后的中文STS数据集shibing624/nli-zh-all/text2vec-base-chinese-sentence-dataset训练得到,并在中文各NLI测试集评估达到较好效果,运行examples/training_sup_text_matching_model_jsonl_data.py代码可训练模型,模型文件已经上传HF model hub,中文s2s(句子vs句子)语义匹配任务推荐使用shibing624/text2vec-base-chinese-paraphrase
模型,是用CoSENT方法训练,基于nghuyong/ernie-3.0-base-zh
用人工挑选后的中文STS数据集shibing624/nli-zh-all/text2vec-base-chinese-paraphrase-dataset,数据集相对于shibing624/nli-zh-all/text2vec-base-chinese-sentence-dataset加入了s2p(sentence to paraphrase)数据,强化了其长文本的表征能力,并在中文各NLI测试集评估达到SOTA,运行examples/training_sup_text_matching_model_jsonl_data.py代码可训练模型,模型文件已经上传HF model hub,中文s2p(句子vs段落)语义匹配任务推荐使用shibing624/text2vec-base-multilingual
模型,是用CoSENT方法训练,基于sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
用人工挑选后的多语言STS数据集shibing624/nli-zh-all/text2vec-base-multilingual-dataset训练得到,并在中英文测试集评估相对于原模型效果有提升,运行examples/training_sup_text_matching_model_jsonl_data.py代码可训练模型,模型文件已经上传HF model hub,多语言语义匹配任务推荐使用w2v-light-tencent-chinese
是腾讯词向量的Word2Vec模型,CPU加载使用,适用于中文字面匹配任务和缺少数据的冷启动情况- 各预训练模型均可以通过transformers调用,如MacBERT模型:
--model_name hfl/chinese-macbert-base
或者roberta模型:--model_name uer/roberta-medium-wwm-chinese-cluecorpussmall
- 为测评模型的鲁棒性,加入了未训练过的SOHU测试集,用于测试模型的泛化能力;为达到开箱即用的实用效果,使用了搜集到的各中文匹配数据集,数据集也上传到HF datasets链接见下方
- 中文匹配任务实验表明,pooling最优是
EncoderType.FIRST_LAST_AVG
和EncoderType.MEAN
,两者预测效果差异很小 - 中文匹配评测结果复现,可以下载中文匹配数据集到
examples/data
,运行tests/test_model_spearman.py代码复现评测结果 - QPS的GPU测试环境是Tesla V100,显存32GB
模型训练实验报告:实验报告
Official Demo: https://www.mulanai.com/product/short_text_sim/
HuggingFace Demo: https://huggingface.co/spaces/shibing624/text2vec
run example: examples/gradio_demo.py to see the demo:
python examples/gradio_demo.py
pip install torch # conda install pytorch
pip install -U text2vec
or
pip install torch # conda install pytorch
pip install -r requirements.txt
git clone https://github.com/shibing624/text2vec.git
cd text2vec
pip install --no-deps .
基于pretrained model
计算文本向量:
>>> from text2vec import SentenceModel
>>> m = SentenceModel()
>>> m.encode("如何更换花呗绑定银行卡")
Embedding shape: (768,)
example: examples/computing_embeddings_demo.py
import sys
sys.path.append('..')
from text2vec import SentenceModel
from text2vec import Word2Vec
def compute_emb(model):
# Embed a list of sentences
sentences = [
'卡',
'银行卡',
'如何更换花呗绑定银行卡',
'花呗更改绑定银行卡',
'This framework generates embeddings for each input sentence',
'Sentences are passed as a list of string.',
'The quick brown fox jumps over the lazy dog.'
]
sentence_embeddings = model.encode(sentences)
print(type(sentence_embeddings), sentence_embeddings.shape)
# The result is a list of sentence embeddings as numpy arrays
for sentence, embedding in zip(sentences, sentence_embeddings):
print("Sentence:", sentence)
print("Embedding shape:", embedding.shape)
print("Embedding head:", embedding[:10])
print()
if __name__ == "__main__":
# 中文句向量模型(CoSENT),中文语义匹配任务推荐,支持fine-tune继续训练
t2v_model = SentenceModel("shibing624/text2vec-base-chinese")
compute_emb(t2v_model)
# 支持多语言的句向量模型(CoSENT),多语言(包括中英文)语义匹配任务推荐,支持fine-tune继续训练
sbert_model = SentenceModel("shibing624/text2vec-base-multilingual")
compute_emb(sbert_model)
# 中文词向量模型(word2vec),中文字面匹配任务和冷启动适用
w2v_model = Word2Vec("w2v-light-tencent-chinese")
compute_emb(w2v_model)
output:
<class 'numpy.ndarray'> (7, 768)
Sentence: 卡
Embedding shape: (768,)
Sentence: 银行卡
Embedding shape: (768,)
...
- 返回值
embeddings
是numpy.ndarray
类型,shape为(sentences_size, model_embedding_size)
,三个模型任选一种即可,推荐用第一个。 shibing624/text2vec-base-chinese
模型是CoSENT方法在中文STS-B数据集训练得到的,模型已经上传到huggingface的 模型库shibing624/text2vec-base-chinese, 是text2vec.SentenceModel
指定的默认模型,可以通过上面示例调用,或者如下所示用transformers库调用, 模型自动下载到本机路径:~/.cache/huggingface/transformers
w2v-light-tencent-chinese
是通过gensim加载的Word2Vec模型,使用腾讯词向量Tencent_AILab_ChineseEmbedding.tar.gz
计算各字词的词向量,句子向量通过单词词 向量取平均值得到,模型自动下载到本机路径:~/.text2vec/datasets/light_Tencent_AILab_ChineseEmbedding.bin
Without text2vec, you can use the model like this:
First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
example: examples/use_origin_transformers_demo.py
import os
import torch
from transformers import AutoTokenizer, AutoModel
os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE"
# Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0] # First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('shibing624/text2vec-base-chinese')
model = AutoModel.from_pretrained('shibing624/text2vec-base-chinese')
sentences = ['如何更换花呗绑定银行卡', '花呗更改绑定银行卡']
# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
# Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input)
# Perform pooling. In this case, max pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
sentence-transformers is a popular library to compute dense vector representations for sentences.
Install sentence-transformers:
pip install -U sentence-transformers
Then load model and predict:
from sentence_transformers import SentenceTransformer
m = SentenceTransformer("shibing624/text2vec-base-chinese")
sentences = ['如何更换花呗绑定银行卡', '花呗更改绑定银行卡']
sentence_embeddings = m.encode(sentences)
print("Sentence embeddings:")
print(sentence_embeddings)
提供两种Word2Vec
词向量,任选一个:
- 轻量版腾讯词向量 百度云盘-密码:tawe 或 谷歌云盘,二进制文件,111M,是简化后的高频143613个词,每个词向量还是200维(跟原版一样),运行程序,自动下载到
~/.text2vec/datasets/light_Tencent_AILab_ChineseEmbedding.bin
- 腾讯词向量-官方全量, 6.78G放到:
~/.text2vec/datasets/Tencent_AILab_ChineseEmbedding.txt
,腾讯词向量主页:https://ai.tencent.com/ailab/nlp/zh/index.html 词向量下载地址:https://ai.tencent.com/ailab/nlp/en/download.html 更多查看腾讯词向量介绍-wiki
example: examples/semantic_text_similarity_demo.py
import sys
sys.path.append('..')
from text2vec import Similarity
# Two lists of sentences
sentences1 = ['如何更换花呗绑定银行卡',
'The cat sits outside',
'A man is playing guitar',
'The new movie is awesome']
sentences2 = ['花呗更改绑定银行卡',
'The dog plays in the garden',
'A woman watches TV',
'The new movie is so great']
sim_model = Similarity()
for i in range(len(sentences1)):
for j in range(len(sentences2)):
score = sim_model.get_score(sentences1[i], sentences2[j])
print("{} \t\t {} \t\t Score: {:.4f}".format(sentences1[i], sentences2[j], score))
output:
如何更换花呗绑定银行卡 花呗更改绑定银行卡 Score: 0.9477
如何更换花呗绑定银行卡 The dog plays in the garden Score: -0.1748
如何更换花呗绑定银行卡 A woman watches TV Score: -0.0839
如何更换花呗绑定银行卡 The new movie is so great Score: -0.0044
The cat sits outside 花呗更改绑定银行卡 Score: -0.0097
The cat sits outside The dog plays in the garden Score: 0.1908
The cat sits outside A woman watches TV Score: -0.0203
The cat sits outside The new movie is so great Score: 0.0302
A man is playing guitar 花呗更改绑定银行卡 Score: -0.0010
A man is playing guitar The dog plays in the garden Score: 0.1062
A man is playing guitar A woman watches TV Score: 0.0055
A man is playing guitar The new movie is so great Score: 0.0097
The new movie is awesome 花呗更改绑定银行卡 Score: 0.0302
The new movie is awesome The dog plays in the garden Score: -0.0160
The new movie is awesome A woman watches TV Score: 0.1321
The new movie is awesome The new movie is so great Score: 0.9591
句子余弦相似度值
score
范围是[-1, 1],值越大越相似。
一般在文档候选集中找与query最相似的文本,常用于QA场景的问句相似匹配、文本相似检索等任务。
example: examples/semantic_search_demo.py
import sys
sys.path.append('..')
from text2vec import SentenceModel, cos_sim, semantic_search
embedder = SentenceModel()
# Corpus with example sentences
corpus = [
'花呗更改绑定银行卡',
'我什么时候开通了花呗',
'A man is eating food.',
'A man is eating a piece of bread.',
'The girl is carrying a baby.',
'A man is riding a horse.',
'A woman is playing violin.',
'Two men pushed carts through the woods.',
'A man is riding a white horse on an enclosed ground.',
'A monkey is playing drums.',
'A cheetah is running behind its prey.'
]
corpus_embeddings = embedder.encode(corpus)
# Query sentences:
queries = [
'如何更换花呗绑定银行卡',
'A man is eating pasta.',
'Someone in a gorilla costume is playing a set of drums.',
'A cheetah chases prey on across a field.']
for query in queries:
query_embedding = embedder.encode(query)
hits = semantic_search(query_embedding, corpus_embeddings, top_k=5)
print("\n\n======================\n\n")
print("Query:", query)
print("\nTop 5 most similar sentences in corpus:")
hits = hits[0] # Get the hits for the first query
for hit in hits:
print(corpus[hit['corpus_id']], "(Score: {:.4f})".format(hit['score']))
output:
Query: 如何更换花呗绑定银行卡
Top 5 most similar sentences in corpus:
花呗更改绑定银行卡 (Score: 0.9477)
我什么时候开通了花呗 (Score: 0.3635)
A man is eating food. (Score: 0.0321)
A man is riding a horse. (Score: 0.0228)
Two men pushed carts through the woods. (Score: 0.0090)
======================
Query: A man is eating pasta.
Top 5 most similar sentences in corpus:
A man is eating food. (Score: 0.6734)
A man is eating a piece of bread. (Score: 0.4269)
A man is riding a horse. (Score: 0.2086)
A man is riding a white horse on an enclosed ground. (Score: 0.1020)
A cheetah is running behind its prey. (Score: 0.0566)
======================
Query: Someone in a gorilla costume is playing a set of drums.
Top 5 most similar sentences in corpus:
A monkey is playing drums. (Score: 0.8167)
A cheetah is running behind its prey. (Score: 0.2720)
A woman is playing violin. (Score: 0.1721)
A man is riding a horse. (Score: 0.1291)
A man is riding a white horse on an enclosed ground. (Score: 0.1213)
======================
Query: A cheetah chases prey on across a field.
Top 5 most similar sentences in corpus:
A cheetah is running behind its prey. (Score: 0.9147)
A monkey is playing drums. (Score: 0.2655)
A man is riding a horse. (Score: 0.1933)
A man is riding a white horse on an enclosed ground. (Score: 0.1733)
A man is eating food. (Score: 0.0329)
similarities库[推荐]
文本相似度计算和文本匹配搜索任务,推荐使用 similarities库 ,兼容本项目release的 Word2vec、SBERT、Cosent类语义匹配模型,还支持字面维度相似度计算、匹配搜索算法,支持文本、图像。
安装:
pip install -U similarities
句子相似度计算:
from similarities import Similarity
m = Similarity()
r = m.similarity('如何更换花呗绑定银行卡', '花呗更改绑定银行卡')
print(f"similarity score: {float(r)}") # similarity score: 0.855146050453186
CoSENT(Cosine Sentence)文本匹配模型,在Sentence-BERT上改进了CosineRankLoss的句向量方案
Network structure:
Training:
Inference:
训练和预测CoSENT模型:
- 在中文STS-B数据集训练和评估
CoSENT
模型
example: examples/training_sup_text_matching_model.py
cd examples
python training_sup_text_matching_model.py --model_arch cosent --do_train --do_predict --num_epochs 10 --model_name hfl/chinese-macbert-base --output_dir ./outputs/STS-B-cosent
- 在蚂蚁金融匹配数据集ATEC上训练和评估
CoSENT
模型
支持这些中文匹配数据集的使用:'ATEC', 'STS-B', 'BQ', 'LCQMC', 'PAWSX',具体参考HuggingFace datasets https://huggingface.co/datasets/shibing624/nli_zh
python training_sup_text_matching_model.py --task_name ATEC --model_arch cosent --do_train --do_predict --num_epochs 10 --model_name hfl/chinese-macbert-base --output_dir ./outputs/ATEC-cosent
- 在自有中文数据集上训练模型
example: examples/training_sup_text_matching_model_mydata.py
python training_sup_text_matching_model_mydata.py --do_train --do_predict
训练集格式参考examples/data/STS-B/STS-B.valid.data
sentence1 sentence2 label
一个女孩在给她的头发做发型。 一个女孩在梳头。 2
一群男人在海滩上踢足球。 一群男孩在海滩上踢足球。 3
一个女人在测量另一个女人的脚踝。 女人测量另一个女人的脚踝。 5
label
可以是0,1标签,0代表两个句子不相似,1代表相似;也可以是0-5的评分,评分越高,表示两个句子越相似。模型都能支持。
- 在英文STS-B数据集训练和评估
CoSENT
模型
example: examples/training_sup_text_matching_model_en.py
cd examples
python training_sup_text_matching_model_en.py --model_arch cosent --do_train --do_predict --num_epochs 10 --model_name bert-base-uncased --output_dir ./outputs/STS-B-en-cosent
- 在英文NLI数据集训练
CoSENT
模型,在STS-B测试集评估效果
example: examples/training_unsup_text_matching_model_en.py
cd examples
python training_unsup_text_matching_model_en.py --model_arch cosent --do_train --do_predict --num_epochs 10 --model_name bert-base-uncased --output_dir ./outputs/STS-B-en-unsup-cosent
Sentence-BERT文本匹配模型,表征式句向量表示方案
Network structure:
Training:
Inference:
- 在中文STS-B数据集训练和评估
SBERT
模型
example: examples/training_sup_text_matching_model.py
cd examples
python training_sup_text_matching_model.py --model_arch sentencebert --do_train --do_predict --num_epochs 10 --model_name hfl/chinese-macbert-base --output_dir ./outputs/STS-B-sbert
- 在英文STS-B数据集训练和评估
SBERT
模型
example: examples/training_sup_text_matching_model_en.py
cd examples
python training_sup_text_matching_model_en.py --model_arch sentencebert --do_train --do_predict --num_epochs 10 --model_name bert-base-uncased --output_dir ./outputs/STS-B-en-sbert
- 在英文NLI数据集训练
SBERT
模型,在STS-B测试集评估效果
example: examples/training_unsup_text_matching_model_en.py
cd examples
python training_unsup_text_matching_model_en.py --model_arch sentencebert --do_train --do_predict --num_epochs 10 --model_name bert-base-uncased --output_dir ./outputs/STS-B-en-unsup-sbert
BERT文本匹配模型,原生BERT匹配网络结构,交互式句向量匹配模型
Network structure:
Training and inference:
训练脚本同上examples/training_sup_text_matching_model.py。
由于text2vec训练的模型可以使用sentence-transformers库加载,此处复用其模型蒸馏方法distillation。
- 模型降维,参考dimensionality_reduction.py使用PCA对模型输出embedding降维,可减少milvus等向量检索数据库的存储压力,还能轻微提升模型效果。
- 模型蒸馏,参考model_distillation.py使用蒸馏方法,将Teacher大模型蒸馏到更少layers层数的student模型中,在权衡效果的情况下,可大幅提升模型预测速度。
提供两种部署模型,搭建服务的方法: 1)基于Jina搭建gRPC服务【推荐】;2)基于FastAPI搭建原生Http服务。
采用C/S模式搭建高性能服务,支持docker云原生,gRPC/HTTP/WebSocket,支持多个模型同时预测,GPU多卡处理。
-
安装:
pip install jina
-
启动服务:
example: examples/jina_server_demo.py
from jina import Flow
port = 50001
f = Flow(port=port).add(
uses='jinahub://Text2vecEncoder',
uses_with={'model_name': 'shibing624/text2vec-base-chinese'}
)
with f:
# backend server forever
f.block()
该模型预测方法(executor)已经上传到JinaHub,里面包括docker、k8s部署方法。
- 调用服务:
from jina import Client
from docarray import Document, DocumentArray
port = 50001
c = Client(port=port)
data = ['如何更换花呗绑定银行卡',
'花呗更改绑定银行卡']
print("data:", data)
print('data embs:')
r = c.post('/', inputs=DocumentArray([Document(text='如何更换花呗绑定银行卡'), Document(text='花呗更改绑定银行卡')]))
print(r.embeddings)
批量调用方法见example: examples/jina_client_demo.py
-
安装:
pip install fastapi uvicorn
-
启动服务:
example: examples/fastapi_server_demo.py
cd examples
python fastapi_server_demo.py
- 调用服务:
curl -X 'GET' \
'http://0.0.0.0:8001/emb?q=hello' \
-H 'accept: application/json'
- 本项目release的数据集:
Dataset | Introduce | Download Link |
---|---|---|
shibing624/nli-zh-all | 中文语义匹配数据合集,整合了文本推理,相似,摘要,问答,指令微调等任务的820万高质量数据,并转化为匹配格式数据集 | https://huggingface.co/datasets/shibing624/nli-zh-all |
shibing624/snli-zh | 中文SNLI和MultiNLI数据集,翻译自英文SNLI和MultiNLI | https://huggingface.co/datasets/shibing624/snli-zh |
shibing624/nli_zh | 中文语义匹配数据集,整合了中文ATEC、BQ、LCQMC、PAWSX、STS-B共5个任务的数据集 | https://huggingface.co/datasets/shibing624/nli_zh or 百度网盘(提取码:qkt6) or github |
shibing624/sts-sohu2021 | 中文语义匹配数据集,2021搜狐校园文本匹配算法大赛数据集 | https://huggingface.co/datasets/shibing624/sts-sohu2021 |
ATEC | 中文ATEC数据集,蚂蚁金服Q-Qpair数据集 | ATEC |
BQ | 中文BQ(Bank Question)数据集,银行Q-Qpair数据集 | BQ |
LCQMC | 中文LCQMC(large-scale Chinese question matching corpus)数据集,Q-Qpair数据集 | LCQMC |
PAWSX | 中文PAWS(Paraphrase Adversaries from Word Scrambling)数据集,Q-Qpair数据集 | PAWSX |
STS-B | 中文STS-B数据集,中文自然语言推理数据集,从英文STS-B翻译为中文的数据集 | STS-B |
常用英文匹配数据集:
- 大名鼎鼎的multi_nli和snli: https://huggingface.co/datasets/multi_nli
- 大名鼎鼎的multi_nli和snli: https://huggingface.co/datasets/snli
- https://huggingface.co/datasets/metaeval/cnli
- https://huggingface.co/datasets/mteb/stsbenchmark-sts
- https://huggingface.co/datasets/JeremiahZ/simcse_sup_nli
- https://huggingface.co/datasets/MoritzLaurer/multilingual-NLI-26lang-2mil7
数据集使用示例:
pip install datasets
from datasets import load_dataset
dataset = load_dataset("shibing624/nli_zh", "STS-B") # ATEC or BQ or LCQMC or PAWSX or STS-B
print(dataset)
print(dataset['test'][0])
output:
DatasetDict({
train: Dataset({
features: ['sentence1', 'sentence2', 'label'],
num_rows: 5231
})
validation: Dataset({
features: ['sentence1', 'sentence2', 'label'],
num_rows: 1458
})
test: Dataset({
features: ['sentence1', 'sentence2', 'label'],
num_rows: 1361
})
})
{'sentence1': '一个女孩在给她的头发做发型。', 'sentence2': '一个女孩在梳头。', 'label': 2}
- Issue(建议):
- 邮件我:xuming: [email protected]
- 微信我:加我微信号:xuming624, 备注:姓名-公司-NLP 进NLP交流群。
如果你在研究中使用了text2vec,请按如下格式引用:
APA:
Xu, M. Text2vec: Text to vector toolkit (Version 1.1.2) [Computer software]. https://github.com/shibing624/text2vec
BibTeX:
@misc{Text2vec,
author = {Ming Xu},
title = {Text2vec: Text to vector toolkit},
year = {2023},
publisher = {GitHub},
journal = {GitHub repository},
howpublished = {\url{https://github.com/shibing624/text2vec}},
}
授权协议为 The Apache License 2.0,可免费用做商业用途。请在产品说明中附加text2vec的链接和授权协议。
项目代码还很粗糙,如果大家对代码有所改进,欢迎提交回本项目,在提交之前,注意以下两点:
- 在
tests
添加相应的单元测试 - 使用
python -m pytest -v
来运行所有单元测试,确保所有单测都是通过的
之后即可提交PR。
- 将句子表示为向量(上):无监督句子表示学习(sentence embedding)
- 将句子表示为向量(下):无监督句子表示学习(sentence embedding)
- A Simple but Tough-to-Beat Baseline for Sentence Embeddings[Sanjeev Arora and Yingyu Liang and Tengyu Ma, 2017]
- 四种计算文本相似度的方法对比[Yves Peirsman]
- Improvements to BM25 and Language Models Examined
- CoSENT:比Sentence-BERT更有效的句向量方案
- 谈谈文本匹配和多轮检索
- Sentence-transformers
- One Embedder, Any Task: Instruction-Finetuned Text Embeddings