Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add support for QRWKV6 hybrid models & slight optimization for RWKV6 #11001

Merged
merged 12 commits into from
Jan 10, 2025
1 change: 1 addition & 0 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -98,6 +98,7 @@ Instructions for adding support for new models: [HOWTO-add-model.md](docs/develo
- [x] [Jais](https://huggingface.co/inceptionai/jais-13b-chat)
- [x] [Bielik-11B-v2.3](https://huggingface.co/collections/speakleash/bielik-11b-v23-66ee813238d9b526a072408a)
- [x] [RWKV-6](https://github.com/BlinkDL/RWKV-LM)
- [x] [QRWKV-6](https://huggingface.co/recursal/QRWKV6-32B-Instruct-Preview-v0.1)
- [x] [GigaChat-20B-A3B](https://huggingface.co/ai-sage/GigaChat-20B-A3B-instruct)

#### Multimodal
Expand Down
81 changes: 77 additions & 4 deletions convert_hf_to_gguf.py
Original file line number Diff line number Diff line change
Expand Up @@ -326,6 +326,7 @@ def prepare_tensors(self):
gguf.MODEL_TENSOR.TIME_MIX_W2,
gguf.MODEL_TENSOR.TIME_MIX_DECAY_W1,
gguf.MODEL_TENSOR.TIME_MIX_DECAY_W2,
gguf.MODEL_TENSOR.TIME_MIX_LERP_FUSED,
gguf.MODEL_TENSOR.POSNET_NORM1,
gguf.MODEL_TENSOR.POSNET_NORM2,
)
Expand Down Expand Up @@ -3256,6 +3257,8 @@ def set_gguf_parameters(self):
# required by llama.cpp, unused
self.gguf_writer.add_head_count(0)

lerp_weights: dict[int, dict[str, Tensor]] = {}

def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
new_name = self.map_tensor_name(name)

Expand All @@ -3271,14 +3274,84 @@ def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iter
if new_name.endswith("time_mix_decay.weight") or "lerp" in new_name:
data_torch = data_torch.squeeze()

rescale_every_n_layers = self.hparams["rescale_every"]
if rescale_every_n_layers > 0:
if new_name.endswith("time_mix_output.weight") or new_name.endswith("channel_mix_value.weight"):
data_torch = data_torch.div_(2 ** int(bid // rescale_every_n_layers))
try:
rescale_every_n_layers = self.hparams["rescale_every"]
if rescale_every_n_layers > 0:
if new_name.endswith("time_mix_output.weight") or new_name.endswith("channel_mix_value.weight"):
data_torch = data_torch.div_(2 ** int(bid // rescale_every_n_layers))
except KeyError:
pass

# concat time_mix_lerp weights to reduce some cpu overhead
# also reduces the number of tensors in the model
if bid is not None and "time_mix_lerp" in new_name and "time_mix_lerp_x" not in new_name:
try:
self.lerp_weights[bid][new_name] = data_torch
except KeyError:
self.lerp_weights[bid] = {new_name: data_torch}
if all(f"blk.{bid}.time_mix_lerp_{i}.weight" in self.lerp_weights[bid].keys() for i in ["w", "k", "v", "r", "g"]):
new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
data = torch.stack([self.lerp_weights[bid][f"blk.{bid}.time_mix_lerp_{i}.weight"].unsqueeze(0) for i in ["w", "k", "v", "r", "g"]], dim=0).unsqueeze(1)
yield (new_name, data)
return

yield (new_name, data_torch)


@Model.register("RWKV6Qwen2ForCausalLM")
class RWKV6Qwen2Model(Rwkv6Model):
model_arch = gguf.MODEL_ARCH.RWKV6QWEN2

def set_vocab(self):
try:
self._set_vocab_sentencepiece()
except FileNotFoundError:
self._set_vocab_gpt2()

def set_gguf_parameters(self):
block_count = self.hparams["num_hidden_layers"]
num_attention_heads = self.hparams["num_attention_heads"]
num_key_value_heads = self.hparams["num_key_value_heads"]
hidden_size = self.hparams["hidden_size"]
head_size = hidden_size // num_attention_heads
rms_norm_eps = self.hparams["rms_norm_eps"]
intermediate_size = self.hparams["intermediate_size"]
time_mix_extra_dim = 64 if hidden_size >= 4096 else 32
time_decay_extra_dim = 128 if hidden_size >= 4096 else 64

# RWKV isn't context limited
self.gguf_writer.add_context_length(1048576)
self.gguf_writer.add_embedding_length(hidden_size)
self.gguf_writer.add_block_count(block_count)
self.gguf_writer.add_wkv_head_size(head_size)
self.gguf_writer.add_time_mix_extra_dim(time_mix_extra_dim)
self.gguf_writer.add_time_decay_extra_dim(time_decay_extra_dim)
self.gguf_writer.add_feed_forward_length(intermediate_size)
self.gguf_writer.add_file_type(self.ftype)

# special parameters for time_mixing in RWKV6QWEN2
self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
self.gguf_writer.add_token_shift_count(1)
# RWKV6QWEN2 use grouped key/value like GQA
self.gguf_writer.add_head_count_kv(num_key_value_heads)

# required by llama.cpp, unused
self.gguf_writer.add_head_count(0)

def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
for new_name, data in super().modify_tensors(data_torch, name, bid):
if "time_mix_w1" in new_name or "time_mix_w2" in new_name:
data = data.view(5, -1, data.shape[-1])
# rwkv6qwen2 has a different order of rkvwg instead of the original wkvrg
# permute them here to avoid code changes
data = torch.stack([data[3], data[1], data[2], data[0], data[4]], dim=0).view(-1, data.shape[-1])
if "w2" in new_name:
data = data.view(5, -1, data.shape[-1])
yield (new_name, data)
continue
yield (new_name, data)


@Model.register("MambaForCausalLM", "MambaLMHeadModel", "FalconMambaForCausalLM")
class MambaModel(Model):
model_arch = gguf.MODEL_ARCH.MAMBA
Expand Down
10 changes: 10 additions & 0 deletions ggml/include/ggml.h
Original file line number Diff line number Diff line change
Expand Up @@ -513,6 +513,7 @@ extern "C" {
GGML_OP_GET_REL_POS,
GGML_OP_ADD_REL_POS,
GGML_OP_RWKV_WKV6,
GGML_OP_GATED_LINEAR_ATTN,

GGML_OP_UNARY,

Expand Down Expand Up @@ -1873,6 +1874,15 @@ extern "C" {
struct ggml_tensor * td,
struct ggml_tensor * state);

GGML_API struct ggml_tensor * ggml_gated_linear_attn(
struct ggml_context * ctx,
struct ggml_tensor * k,
struct ggml_tensor * v,
struct ggml_tensor * q,
struct ggml_tensor * g,
struct ggml_tensor * state,
float scale);

// custom operators

typedef void (*ggml_unary_op_f32_t) (const int, float *, const float *);
Expand Down
200 changes: 198 additions & 2 deletions ggml/src/ggml-cpu/ggml-cpu.c
Original file line number Diff line number Diff line change
Expand Up @@ -11803,9 +11803,9 @@ static void ggml_compute_forward_add_rel_pos(
static void ggml_compute_forward_rwkv_wkv6_f32(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const int64_t T = dst->src[1]->ne[3];
const int64_t T = dst->src[1]->ne[2];
const int64_t C = dst->ne[0];
const int64_t HEADS = dst->src[1]->ne[2];
const int64_t HEADS = dst->src[1]->ne[1];
const int64_t n_seqs = dst->src[5]->ne[1];
const int64_t head_size = C / HEADS;

Expand Down Expand Up @@ -12000,6 +12000,197 @@ static void ggml_compute_forward_rwkv_wkv6(
}
}

// ggml_compute_forward_gla

static void ggml_compute_forward_gla_f32(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const int64_t T = dst->src[1]->ne[2];
const int64_t C = dst->ne[0];
const int64_t HEADS = dst->src[1]->ne[1];
const int64_t n_seqs = dst->src[4]->ne[1];
const int64_t head_size = C / HEADS;
const float scale = ggml_get_op_params_f32(dst, 0);

float * dst_data = (float *) dst->data;
float * state = ((float *) dst->data) + C * T;

const int ith = params->ith;
const int nth = params->nth;

if (ith >= HEADS) {
return;
}

const int h_start = (HEADS * ith) / nth;
const int h_end = ((HEADS * (ith + 1)) / nth < HEADS) ?
(HEADS * (ith + 1)) / nth : HEADS;

float * k = (float *) dst->src[0]->data;
float * v = (float *) dst->src[1]->data;
float * q = (float *) dst->src[2]->data;
float * g = (float *) dst->src[3]->data;

size_t t_stride = HEADS * head_size; // Same to C

size_t h_stride = C / HEADS;
GGML_ASSERT(C % HEADS == 0); // C must be divisible by HEADS
size_t h_stride_2d = head_size * head_size;

if (ith == 0) {
memset(dst_data, 0, T * C * sizeof(float));
}
ggml_barrier(params->threadpool);


#if defined(__AVX__) && !defined(__AVX512F__)
#define GGML_F32X GGML_F32x8
#define GGML_F32X_SET1 GGML_F32x8_SET1
#define GGML_F32X_LOAD GGML_F32x8_LOAD
#define GGML_F32X_STORE GGML_F32x8_STORE
#define GGML_F32X_MUL GGML_F32x8_MUL
#define GGML_F32X_FMA GGML_F32x8_FMA
#define GLA_VECTOR_SIZE 8
#elif defined(__AVX512F__)
#define GGML_F32X GGML_F32x16
#define GGML_F32X_SET1 GGML_F32x16_SET1
#define GGML_F32X_LOAD GGML_F32x16_LOAD
#define GGML_F32X_STORE GGML_F32x16_STORE
#define GGML_F32X_MUL GGML_F32x16_MUL
#define GGML_F32X_FMA GGML_F32x16_FMA
#define GLA_VECTOR_SIZE 16
#elif defined(__ARM_NEON) && defined(__aarch64__)
#define GGML_F32X GGML_F32x4
#define GGML_F32X_SET1 GGML_F32x4_SET1
#define GGML_F32X_LOAD GGML_F32x4_LOAD
#define GGML_F32X_STORE GGML_F32x4_STORE
#define GGML_F32X_MUL GGML_F32x4_MUL
#define GGML_F32X_FMA GGML_F32x4_FMA
#define GLA_VECTOR_SIZE 4
#endif

#ifdef GLA_VECTOR_SIZE
const int64_t vec_count = head_size / GLA_VECTOR_SIZE;

for (int64_t t = 0; t < T; t++) {
size_t t_offset = t * t_stride;
size_t state_offset = head_size * C * (t / (T / n_seqs));
float * state_cur = state + state_offset;
float * state_prev = t % (T / n_seqs) ? state_cur : (float*)dst->src[4]->data + state_offset;

for (int64_t h = h_start; h < h_end; h++) {
size_t h_offset = h * h_stride;
size_t t_h_offset = t_offset + h_offset;
size_t h_2d_offset = h * h_stride_2d;

for (int64_t i = 0; i < head_size; i++) {
size_t t_h_i_offset = t_h_offset + i;
size_t h_2d_i_offset = h_2d_offset + i * h_stride;

float k_val = k[t_h_i_offset];
float q_val = q[t_h_i_offset] * scale;
float g_val = g[t_h_i_offset];

// Broadcast scalar values to vectors
GGML_F32X k_vec = GGML_F32X_SET1(k_val);
GGML_F32X q_vec = GGML_F32X_SET1(q_val);
GGML_F32X g_vec = GGML_F32X_SET1(g_val);

for (int64_t j = 0; j < vec_count; j++) {
size_t base_j = j * GLA_VECTOR_SIZE;
size_t t_h_j_offset = t_h_offset + base_j;
size_t h_2d_i_j_offset = h_2d_i_offset + base_j;

// Load x elements at once
GGML_F32X v_vec = GGML_F32X_LOAD(&v[t_h_j_offset]);
GGML_F32X prev_state_vec = GGML_F32X_LOAD(&state_prev[h_2d_i_j_offset]);
GGML_F32X dst_vec = GGML_F32X_LOAD(&dst_data[t_h_j_offset]);

// Compute kv = v * k
GGML_F32X kv_vec = GGML_F32X_MUL(v_vec, k_vec);

// Compute temp = prev_state * g + kv
GGML_F32X temp_vec = GGML_F32X_FMA(kv_vec, prev_state_vec, g_vec);

// Update dst: dst += temp * q
dst_vec = GGML_F32X_FMA(dst_vec, temp_vec, q_vec);
GGML_F32X_STORE(&dst_data[t_h_j_offset], dst_vec);

// Update state
GGML_F32X_STORE(&state_cur[h_2d_i_j_offset], temp_vec);
}

// Handle remaining elements, this will not be used.
for (int64_t j = vec_count * GLA_VECTOR_SIZE; j < head_size; j++) {
size_t t_h_j_offset = t_h_offset + j;
size_t h_2d_i_j_offset = h_2d_i_offset + j;
float v_val = v[t_h_j_offset];
float kv_val = v_val * k_val;
float prev_state_val = state_prev[h_2d_i_j_offset];
float temp_val = kv_val + prev_state_val * g_val;
dst_data[t_h_j_offset] += temp_val * q_val;
state_cur[h_2d_i_j_offset] = temp_val;
}
}
}
}

#else
for (int64_t t = 0; t < T; t++) {
size_t t_offset = t * t_stride;
size_t state_offset = head_size * C * (t / (T / n_seqs));
float * state_cur = state + state_offset;
float * state_prev = t % (T / n_seqs) ? state_cur : (float*)dst->src[4]->data + state_offset;

for (int64_t h = h_start; h < h_end; h++) {
size_t h_offset = h * h_stride;
size_t t_h_offset = t_offset + h_offset;
size_t h_2d_offset = h * h_stride_2d;

for (int64_t i = 0; i < head_size; i++) {
size_t t_h_i_offset = t_h_offset + i;
size_t h_2d_i_offset = h_2d_offset + i * h_stride;

float k_val = k[t_h_i_offset];
float q_val = q[t_h_i_offset] * scale;
float g_val = g[t_h_i_offset];

for (int64_t j = 0; j < head_size; j++) {
size_t t_h_j_offset = t_h_offset + j;
size_t h_2d_i_j_offset = h_2d_i_offset + j;

float v_val = v[t_h_j_offset];
float kv_val = v_val * k_val;
float prev_state_val = state_prev[h_2d_i_j_offset];
float temp_val = prev_state_val * g_val + kv_val;
dst_data[t_h_j_offset] += temp_val * q_val;
state_cur[h_2d_i_j_offset] = temp_val;
}
}
}
}
#endif
}


static void ggml_compute_forward_gla(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {

const struct ggml_tensor * src0 = dst->src[0];

switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_gla_f32(params, dst);
} break;
default:
{
GGML_ABORT("fatal error");
}
}
}

// ggml_compute_forward_map_unary

static void ggml_compute_forward_map_unary_f32(
Expand Down Expand Up @@ -12749,6 +12940,10 @@ static void ggml_compute_forward(struct ggml_compute_params * params, struct ggm
{
ggml_compute_forward_rwkv_wkv6(params, tensor);
} break;
case GGML_OP_GATED_LINEAR_ATTN:
{
ggml_compute_forward_gla(params, tensor);
} break;
case GGML_OP_MAP_UNARY:
{
ggml_unary_op_f32_t fun;
Expand Down Expand Up @@ -13047,6 +13242,7 @@ static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads) {
case GGML_OP_WIN_UNPART:
case GGML_OP_GET_REL_POS:
case GGML_OP_RWKV_WKV6:
case GGML_OP_GATED_LINEAR_ATTN:
case GGML_OP_MAP_UNARY:
case GGML_OP_MAP_BINARY:
case GGML_OP_MAP_CUSTOM1_F32:
Expand Down
5 changes: 5 additions & 0 deletions ggml/src/ggml-cuda/ggml-cuda.cu
Original file line number Diff line number Diff line change
Expand Up @@ -37,6 +37,7 @@
#include "ggml-cuda/unary.cuh"
#include "ggml-cuda/upscale.cuh"
#include "ggml-cuda/wkv6.cuh"
#include "ggml-cuda/gla.cuh"

#include <algorithm>
#include <array>
Expand Down Expand Up @@ -2167,6 +2168,9 @@ static bool ggml_cuda_compute_forward(ggml_backend_cuda_context & ctx, struct gg
case GGML_OP_RWKV_WKV6:
ggml_cuda_op_rwkv_wkv6(ctx, dst);
break;
case GGML_OP_GATED_LINEAR_ATTN:
ggml_cuda_op_gated_linear_attn(ctx, dst);
break;
case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
ggml_cuda_cross_entropy_loss_back(ctx, dst);
break;
Expand Down Expand Up @@ -3010,6 +3014,7 @@ static bool ggml_backend_cuda_device_supports_op(ggml_backend_dev_t dev, const g
case GGML_OP_TIMESTEP_EMBEDDING:
case GGML_OP_LEAKY_RELU:
case GGML_OP_RWKV_WKV6:
case GGML_OP_GATED_LINEAR_ATTN:
return true;
case GGML_OP_FLASH_ATTN_EXT: {
#ifndef FLASH_ATTN_AVAILABLE
Expand Down
Loading
Loading