Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Update llama-run to include temperature option #10899

Merged
merged 1 commit into from
Dec 23, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 2 additions & 0 deletions examples/run/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -19,6 +19,8 @@ Options:
Context size (default: 2048)
-n, --ngl <value>
Number of GPU layers (default: 0)
--temp <value>
Temperature (default: 0.8)
-v, --verbose, --log-verbose
Set verbosity level to infinity (i.e. log all messages, useful for debugging)
-h, --help
Expand Down
111 changes: 73 additions & 38 deletions examples/run/run.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -55,29 +55,51 @@ static int printe(const char * fmt, ...) {
class Opt {
public:
int init(int argc, const char ** argv) {
ctx_params = llama_context_default_params();
model_params = llama_model_default_params();
context_size_default = ctx_params.n_batch;
ngl_default = model_params.n_gpu_layers;
common_params_sampling sampling;
temperature_default = sampling.temp;

if (argc < 2) {
printe("Error: No arguments provided.\n");
print_help();
return 1;
}

// Parse arguments
if (parse(argc, argv)) {
printe("Error: Failed to parse arguments.\n");
help();
print_help();
return 1;
}

// If help is requested, show help and exit
if (help_) {
help();
if (help) {
print_help();
return 2;
}

ctx_params.n_batch = context_size >= 0 ? context_size : context_size_default;
model_params.n_gpu_layers = ngl >= 0 ? ngl : ngl_default;
temperature = temperature >= 0 ? temperature : temperature_default;

return 0; // Success
}

llama_context_params ctx_params;
llama_model_params model_params;
std::string model_;
std::string user_;
int context_size_ = -1, ngl_ = -1;
bool verbose_ = false;
std::string user;
int context_size = -1, ngl = -1;
float temperature = -1;
bool verbose = false;

private:
bool help_ = false;
int context_size_default = -1, ngl_default = -1;
float temperature_default = -1;
bool help = false;

bool parse_flag(const char ** argv, int i, const char * short_opt, const char * long_opt) {
return strcmp(argv[i], short_opt) == 0 || strcmp(argv[i], long_opt) == 0;
Expand All @@ -89,25 +111,40 @@ class Opt {
}

option_value = std::atoi(argv[++i]);

return 0;
}

int handle_option_with_value(int argc, const char ** argv, int & i, float & option_value) {
if (i + 1 >= argc) {
return 1;
}

option_value = std::atof(argv[++i]);

return 0;
}

int parse(int argc, const char ** argv) {
bool options_parsing = true;
for (int i = 1, positional_args_i = 0; i < argc; ++i) {
if (options_parsing && (strcmp(argv[i], "-c") == 0 || strcmp(argv[i], "--context-size") == 0)) {
if (handle_option_with_value(argc, argv, i, context_size_) == 1) {
if (handle_option_with_value(argc, argv, i, context_size) == 1) {
return 1;
}
} else if (options_parsing && (strcmp(argv[i], "-n") == 0 || strcmp(argv[i], "--ngl") == 0)) {
if (handle_option_with_value(argc, argv, i, ngl_) == 1) {
if (handle_option_with_value(argc, argv, i, ngl) == 1) {
return 1;
}
} else if (options_parsing && strcmp(argv[i], "--temp") == 0) {
if (handle_option_with_value(argc, argv, i, temperature) == 1) {
return 1;
}
} else if (options_parsing &&
(parse_flag(argv, i, "-v", "--verbose") || parse_flag(argv, i, "-v", "--log-verbose"))) {
verbose_ = true;
verbose = true;
} else if (options_parsing && parse_flag(argv, i, "-h", "--help")) {
help_ = true;
help = true;
return 0;
} else if (options_parsing && strcmp(argv[i], "--") == 0) {
options_parsing = false;
Expand All @@ -120,16 +157,16 @@ class Opt {
model_ = argv[i];
} else if (positional_args_i == 1) {
++positional_args_i;
user_ = argv[i];
user = argv[i];
} else {
user_ += " " + std::string(argv[i]);
user += " " + std::string(argv[i]);
}
}

return 0;
}

void help() const {
void print_help() const {
printf(
"Description:\n"
" Runs a llm\n"
Expand All @@ -142,6 +179,8 @@ class Opt {
" Context size (default: %d)\n"
" -n, --ngl <value>\n"
" Number of GPU layers (default: %d)\n"
" --temp <value>\n"
" Temperature (default: %.1f)\n"
" -v, --verbose, --log-verbose\n"
" Set verbosity level to infinity (i.e. log all messages, useful for debugging)\n"
" -h, --help\n"
Expand Down Expand Up @@ -170,7 +209,7 @@ class Opt {
" llama-run file://some-file3.gguf\n"
" llama-run --ngl 999 some-file4.gguf\n"
" llama-run --ngl 999 some-file5.gguf Hello World\n",
llama_context_default_params().n_batch, llama_model_default_params().n_gpu_layers);
context_size_default, ngl_default, temperature_default);
}
};

Expand Down Expand Up @@ -495,12 +534,12 @@ class LlamaData {
return 1;
}

context = initialize_context(model, opt.context_size_);
context = initialize_context(model, opt);
if (!context) {
return 1;
}

sampler = initialize_sampler();
sampler = initialize_sampler(opt);
return 0;
}

Expand Down Expand Up @@ -619,14 +658,12 @@ class LlamaData {
// Initializes the model and returns a unique pointer to it
llama_model_ptr initialize_model(Opt & opt) {
ggml_backend_load_all();
llama_model_params model_params = llama_model_default_params();
model_params.n_gpu_layers = opt.ngl_ >= 0 ? opt.ngl_ : model_params.n_gpu_layers;
resolve_model(opt.model_);
printe(
"\r%*s"
"\rLoading model",
get_terminal_width(), " ");
llama_model_ptr model(llama_load_model_from_file(opt.model_.c_str(), model_params));
llama_model_ptr model(llama_load_model_from_file(opt.model_.c_str(), opt.model_params));
if (!model) {
printe("%s: error: unable to load model from file: %s\n", __func__, opt.model_.c_str());
}
Expand All @@ -636,10 +673,8 @@ class LlamaData {
}

// Initializes the context with the specified parameters
llama_context_ptr initialize_context(const llama_model_ptr & model, const int n_ctx) {
llama_context_params ctx_params = llama_context_default_params();
ctx_params.n_ctx = ctx_params.n_batch = n_ctx >= 0 ? n_ctx : ctx_params.n_batch;
llama_context_ptr context(llama_new_context_with_model(model.get(), ctx_params));
llama_context_ptr initialize_context(const llama_model_ptr & model, const Opt & opt) {
llama_context_ptr context(llama_new_context_with_model(model.get(), opt.ctx_params));
if (!context) {
printe("%s: error: failed to create the llama_context\n", __func__);
}
Expand All @@ -648,10 +683,10 @@ class LlamaData {
}

// Initializes and configures the sampler
llama_sampler_ptr initialize_sampler() {
llama_sampler_ptr initialize_sampler(const Opt & opt) {
llama_sampler_ptr sampler(llama_sampler_chain_init(llama_sampler_chain_default_params()));
llama_sampler_chain_add(sampler.get(), llama_sampler_init_min_p(0.05f, 1));
llama_sampler_chain_add(sampler.get(), llama_sampler_init_temp(0.8f));
llama_sampler_chain_add(sampler.get(), llama_sampler_init_temp(opt.temperature));
llama_sampler_chain_add(sampler.get(), llama_sampler_init_dist(LLAMA_DEFAULT_SEED));

return sampler;
Expand Down Expand Up @@ -798,9 +833,9 @@ static int apply_chat_template_with_error_handling(LlamaData & llama_data, const
}

// Helper function to handle user input
static int handle_user_input(std::string & user_input, const std::string & user_) {
if (!user_.empty()) {
user_input = user_;
static int handle_user_input(std::string & user_input, const std::string & user) {
if (!user.empty()) {
user_input = user;
return 0; // No need for interactive input
}

Expand Down Expand Up @@ -832,17 +867,17 @@ static bool is_stdout_a_terminal() {
}

// Function to tokenize the prompt
static int chat_loop(LlamaData & llama_data, const std::string & user_) {
static int chat_loop(LlamaData & llama_data, const std::string & user) {
int prev_len = 0;
llama_data.fmtted.resize(llama_n_ctx(llama_data.context.get()));
static const bool stdout_a_terminal = is_stdout_a_terminal();
while (true) {
// Get user input
std::string user_input;
while (handle_user_input(user_input, user_)) {
while (handle_user_input(user_input, user)) {
}

add_message("user", user_.empty() ? user_input : user_, llama_data);
add_message("user", user.empty() ? user_input : user, llama_data);
int new_len;
if (apply_chat_template_with_error_handling(llama_data, true, new_len) < 0) {
return 1;
Expand All @@ -854,7 +889,7 @@ static int chat_loop(LlamaData & llama_data, const std::string & user_) {
return 1;
}

if (!user_.empty()) {
if (!user.empty()) {
break;
}

Expand All @@ -869,7 +904,7 @@ static int chat_loop(LlamaData & llama_data, const std::string & user_) {

static void log_callback(const enum ggml_log_level level, const char * text, void * p) {
const Opt * opt = static_cast<Opt *>(p);
if (opt->verbose_ || level == GGML_LOG_LEVEL_ERROR) {
if (opt->verbose || level == GGML_LOG_LEVEL_ERROR) {
printe("%s", text);
}
}
Expand All @@ -890,11 +925,11 @@ int main(int argc, const char ** argv) {
}

if (!is_stdin_a_terminal()) {
if (!opt.user_.empty()) {
opt.user_ += "\n\n";
if (!opt.user.empty()) {
opt.user += "\n\n";
}

opt.user_ += read_pipe_data();
opt.user += read_pipe_data();
}

llama_log_set(log_callback, &opt);
Expand All @@ -903,7 +938,7 @@ int main(int argc, const char ** argv) {
return 1;
}

if (chat_loop(llama_data, opt.user_)) {
if (chat_loop(llama_data, opt.user)) {
return 1;
}

Expand Down
Loading