Skip to content

Commit

Permalink
vulkan: optimize mul_mat for small values of N
Browse files Browse the repository at this point in the history
Make the mul_mat_vec shaders support N>1 (as a spec constant, NUM_COLS) where
the batch_strides are overloaded to hold the row strides. Put the loads from the
B matrix in the innermost loop because it should cache better.

Share some code for reducing the result values to memory in mul_mat_vec_base.
  • Loading branch information
jeffbolznv committed Dec 26, 2024
1 parent d79d8f3 commit 905c05d
Show file tree
Hide file tree
Showing 9 changed files with 290 additions and 351 deletions.
89 changes: 51 additions & 38 deletions ggml/src/ggml-vulkan/ggml-vulkan.cpp

Large diffs are not rendered by default.

124 changes: 53 additions & 71 deletions ggml/src/ggml-vulkan/vulkan-shaders/mul_mat_vec.comp
Original file line number Diff line number Diff line change
Expand Up @@ -9,9 +9,6 @@

layout(local_size_x_id = 0, local_size_y = 1, local_size_z = 1) in;

layout (constant_id = 0) const uint BLOCK_SIZE = 32;
layout (constant_id = 1) const uint NUM_ROWS = 1;

#if !defined(DATA_A_F32) && !defined(DATA_A_F16)
#define K_PER_ITER 8
#else
Expand All @@ -21,70 +18,70 @@ layout (constant_id = 1) const uint NUM_ROWS = 1;

uint a_offset, b_offset, d_offset, y_offset;

shared FLOAT_TYPE tmpsh[NUM_ROWS][BLOCK_SIZE];

void iter(inout FLOAT_TYPE temp[NUM_ROWS], const uint first_row, const uint num_rows, const uint tid, const uint i, bool lastiter)
void iter(inout FLOAT_TYPE temp[NUM_COLS][NUM_ROWS], const uint first_row, const uint num_rows, const uint tid, const uint i, bool lastiter)
{
const uint col = i*BLOCK_SIZE + K_PER_ITER*tid;
const uint iqs = (col%QUANT_K)/QUANT_R; // quant index
const uint iybs = col - col%QUANT_K; // y block start index
[[unroll]] for (uint j = 0; j < NUM_COLS; ++j) {
const uint col = i*BLOCK_SIZE + K_PER_ITER*tid;
const uint iqs = (col%QUANT_K)/QUANT_R; // quant index
const uint iybs = col - col%QUANT_K; // y block start index

#if K_PER_ITER == 8
#if QUANT_R == 2
const B_TYPE_VEC4 bv02 = data_b_v4[(b_offset + iybs + iqs) / 4];
const B_TYPE_VEC4 bv13 = data_b_v4[(b_offset + iybs + iqs + y_offset) / 4];
const vec4 bv0 = vec4(bv02.x, bv13.x, bv02.y, bv13.y);
const vec4 bv1 = vec4(bv02.z, bv13.z, bv02.w, bv13.w);
const B_TYPE_VEC4 bv02 = data_b_v4[(j*p.batch_stride_b + b_offset + iybs + iqs) / 4];
const B_TYPE_VEC4 bv13 = data_b_v4[(j*p.batch_stride_b + b_offset + iybs + iqs + y_offset) / 4];
const vec4 bv0 = vec4(bv02.x, bv13.x, bv02.y, bv13.y);
const vec4 bv1 = vec4(bv02.z, bv13.z, bv02.w, bv13.w);
#else
const vec4 bv0 = vec4(data_b_v4[(b_offset + iybs + iqs) / 4]);
const vec4 bv1 = vec4(data_b_v4[(b_offset + iybs + iqs) / 4 + 1]);
const vec4 bv0 = vec4(data_b_v4[(j*p.batch_stride_b + b_offset + iybs + iqs) / 4]);
const vec4 bv1 = vec4(data_b_v4[(j*p.batch_stride_b + b_offset + iybs + iqs) / 4 + 1]);
#endif
#else
// Check if the second of the pair of elements is OOB, and don't fetch B or
// accumulate it. We still fetch a pair of elements for A, which is fine for
// quantized formats since they'll be within the same block. We should
// probably skip fetching the second element for F16/F32, but as of now we
// still do.
const bool OOB = lastiter && (iybs + iqs + y_offset >= p.ncols);

FLOAT_TYPE b0 = 0, b1 = 0;
b0 = FLOAT_TYPE(data_b[b_offset + iybs + iqs]);
if (!OOB) {
b1 = FLOAT_TYPE(data_b[b_offset + iybs + iqs + y_offset]);
}
// Check if the second of the pair of elements is OOB, and don't fetch B or
// accumulate it. We still fetch a pair of elements for A, which is fine for
// quantized formats since they'll be within the same block. We should
// probably skip fetching the second element for F16/F32, but as of now we
// still do.
const bool OOB = lastiter && (iybs + iqs + y_offset >= p.ncols);

FLOAT_TYPE b0 = 0, b1 = 0;
b0 = FLOAT_TYPE(data_b[j*p.batch_stride_b + b_offset + iybs + iqs]);
if (!OOB) {
b1 = FLOAT_TYPE(data_b[j*p.batch_stride_b + b_offset + iybs + iqs + y_offset]);
}
#endif
uint ibi = first_row*p.ncols;
[[unroll]] for (uint n = 0; n < num_rows; ++n) {
const uint ib = (ibi + col)/QUANT_K; // block index
ibi += p.ncols;
uint ibi = first_row*p.ncols;
[[unroll]] for (uint n = 0; n < num_rows; ++n) {
const uint ib = (ibi + col)/QUANT_K; // block index
ibi += p.ncols;

#if K_PER_ITER == 8
vec4 v = dequantize4(ib, iqs, a_offset);
vec4 v2 = dequantize4(ib, iqs+(4/QUANT_R), a_offset);
vec4 v = dequantize4(ib, iqs, a_offset);
vec4 v2 = dequantize4(ib, iqs+(4/QUANT_R), a_offset);

const vec2 dm = get_dm(ib, a_offset);
if (dm.y != 0) { // quant has min component
v = v * dm.x + dm.y;
v2 = v2 * dm.x + dm.y;
}
const vec2 dm = get_dm(ib, a_offset);
if (dm.y != 0) { // quant has min component
v = v * dm.x + dm.y;
v2 = v2 * dm.x + dm.y;
}

// matrix multiplication
FLOAT_TYPE rowtmp = dot(bv0, v);
rowtmp += dot(bv1, v2);
// matrix multiplication
FLOAT_TYPE rowtmp = dot(bv0, v);
rowtmp += dot(bv1, v2);

if (dm.y == 0)
rowtmp *= dm.x;
if (dm.y == 0)
rowtmp *= dm.x;

temp[n] += rowtmp;
temp[j][n] += rowtmp;
#else
const vec2 v = dequantize(ib, iqs, a_offset);
const vec2 v = dequantize(ib, iqs, a_offset);

// matrix multiplication
temp[n] = fma(FLOAT_TYPE(v.x), b0, temp[n]);
if (!OOB) {
temp[n] = fma(FLOAT_TYPE(v.y), b1, temp[n]);
}
// matrix multiplication
temp[j][n] = fma(FLOAT_TYPE(v.x), b0, temp[j][n]);
if (!OOB) {
temp[j][n] = fma(FLOAT_TYPE(v.y), b1, temp[j][n]);
}
#endif
}
}
}

Expand All @@ -96,10 +93,12 @@ void compute_outputs(const uint32_t first_row, const uint32_t num_rows) {

y_offset = QUANT_R == 1 ? 1 : QUANT_K/2;

FLOAT_TYPE temp[NUM_ROWS];
FLOAT_TYPE temp[NUM_COLS][NUM_ROWS];

for (uint i = 0; i < NUM_ROWS; ++i) {
temp[i] = FLOAT_TYPE(0);
[[unroll]] for (uint j = 0; j < NUM_COLS; ++j) {
[[unroll]] for (uint i = 0; i < NUM_ROWS; ++i) {
temp[j][i] = FLOAT_TYPE(0);
}
}

uint num_iters = p.ncols / (K_PER_ITER * BLOCK_SIZE);
Expand Down Expand Up @@ -131,24 +130,7 @@ void compute_outputs(const uint32_t first_row, const uint32_t num_rows) {
i++;
}

// sum up partial sums and write back result
[[unroll]] for (uint n = 0; n < num_rows; ++n) {
tmpsh[n][tid] = temp[n];
}
barrier();
[[unroll]] for (uint s = BLOCK_SIZE/2; s > 0; s >>= 1) {
if (tid < s) {
[[unroll]] for (uint n = 0; n < num_rows; ++n) {
tmpsh[n][tid] += tmpsh[n][tid + s];
}
}
barrier();
}
if (tid == 0) {
[[unroll]] for (uint n = 0; n < num_rows; ++n) {
data_d[d_offset + first_row + n] = D_TYPE(tmpsh[n][0]);
}
}
reduce_result(temp, d_offset, first_row, num_rows, tid);
}

void main() {
Expand Down
33 changes: 33 additions & 0 deletions ggml/src/ggml-vulkan/vulkan-shaders/mul_mat_vec_base.comp
Original file line number Diff line number Diff line change
Expand Up @@ -83,3 +83,36 @@ void get_offsets(out uint a_offset, out uint b_offset, out uint d_offset) {
batch_idx * p.batch_stride_d;
#endif
}

layout (constant_id = 0) const uint BLOCK_SIZE = 32;
layout (constant_id = 1) const uint NUM_ROWS = 1;
layout (constant_id = 2) const uint NUM_COLS = 1;

shared FLOAT_TYPE tmpsh[NUM_COLS][NUM_ROWS][BLOCK_SIZE];

void reduce_result(const in FLOAT_TYPE temp[NUM_COLS][NUM_ROWS], const in uint32_t d_offset, const in uint32_t first_row, const in uint32_t num_rows, const in uint32_t tid) {
// sum up partial sums and write back result
[[unroll]] for (uint j = 0; j < NUM_COLS; ++j) {
[[unroll]] for (uint n = 0; n < num_rows; ++n) {
tmpsh[j][n][tid] = temp[j][n];
}
}
barrier();
[[unroll]] for (uint s = BLOCK_SIZE/2; s > 0; s >>= 1) {
if (tid < s) {
[[unroll]] for (uint j = 0; j < NUM_COLS; ++j) {
[[unroll]] for (uint n = 0; n < num_rows; ++n) {
tmpsh[j][n][tid] += tmpsh[j][n][tid + s];
}
}
}
barrier();
}
if (tid == 0) {
[[unroll]] for (uint j = 0; j < NUM_COLS; ++j) {
[[unroll]] for (uint n = 0; n < num_rows; ++n) {
data_d[j*p.batch_stride_d + d_offset + first_row + n] = D_TYPE(tmpsh[j][n][0]);
}
}
}
}
92 changes: 37 additions & 55 deletions ggml/src/ggml-vulkan/vulkan-shaders/mul_mat_vec_q2_k.comp
Original file line number Diff line number Diff line change
Expand Up @@ -5,11 +5,6 @@

layout(local_size_x_id = 0, local_size_y = 1, local_size_z = 1) in;

layout (constant_id = 0) const uint BLOCK_SIZE = 32;
layout (constant_id = 1) const uint NUM_ROWS = 1;

shared FLOAT_TYPE tmpsh[NUM_ROWS][BLOCK_SIZE];

void compute_outputs(const uint32_t first_row, const uint32_t num_rows) {
uint a_offset, b_offset, d_offset;
get_offsets(a_offset, b_offset, d_offset);
Expand All @@ -32,24 +27,17 @@ void compute_outputs(const uint32_t first_row, const uint32_t num_rows) {
const uint s_offset = 8*v_im;
const uint y_offset = 128*v_im + l0;

FLOAT_TYPE temp[NUM_ROWS];
FLOAT_TYPE temp[NUM_COLS][NUM_ROWS];

[[unroll]] for (uint i = 0; i < NUM_ROWS; ++i) {
temp[i] = FLOAT_TYPE(0);
[[unroll]] for (uint j = 0; j < NUM_COLS; ++j) {
[[unroll]] for (uint i = 0; i < NUM_ROWS; ++i) {
temp[j][i] = FLOAT_TYPE(0);
}
}

[[unroll]] for (uint i = ix; i < num_blocks_per_row; i += it_size) {
const uint y_idx = i * QUANT_K + y_offset;

B_TYPE_VEC2 b0 = data_b_v2[(b_offset + y_idx) / 2 + 0];
B_TYPE_VEC2 b16 = data_b_v2[(b_offset + y_idx) / 2 + 8];
B_TYPE_VEC2 b32 = data_b_v2[(b_offset + y_idx) / 2 + 16];
B_TYPE_VEC2 b48 = data_b_v2[(b_offset + y_idx) / 2 + 24];
B_TYPE_VEC2 b64 = data_b_v2[(b_offset + y_idx) / 2 + 32];
B_TYPE_VEC2 b80 = data_b_v2[(b_offset + y_idx) / 2 + 40];
B_TYPE_VEC2 b96 = data_b_v2[(b_offset + y_idx) / 2 + 48];
B_TYPE_VEC2 b112 = data_b_v2[(b_offset + y_idx) / 2 + 56];

[[unroll]] for (uint n = 0; n < num_rows; ++n) {
const uint ib0 = a_offset / QUANT_K + (first_row+n)*num_blocks_per_row;
f16vec2 d = data_a[ib0 + i].d;
Expand All @@ -74,48 +62,42 @@ void compute_outputs(const uint32_t first_row, const uint32_t num_rows) {
uvec2 qs0 = uvec2(unpack8(qs0_u16));
uvec2 qs16 = uvec2(unpack8(qs16_u16));

FLOAT_TYPE sum1 = FLOAT_TYPE(0.0);
FLOAT_TYPE sum2 = FLOAT_TYPE(0.0);
[[unroll]] for (int l = 0; l < 2; ++l) {
sum1 = fma(FLOAT_TYPE(b0[l]), FLOAT_TYPE(s0_lo4[0]) * FLOAT_TYPE((qs0[l] >> 0) & 3),
fma(FLOAT_TYPE(b16[l]), FLOAT_TYPE(s0_lo4[1]) * FLOAT_TYPE((qs16[l] >> 0) & 3),
fma(FLOAT_TYPE(b32[l]), FLOAT_TYPE(s0_lo4[2]) * FLOAT_TYPE((qs0[l] >> 2) & 3),
fma(FLOAT_TYPE(b48[l]), FLOAT_TYPE(s0_lo4[3]) * FLOAT_TYPE((qs16[l] >> 2) & 3),
fma(FLOAT_TYPE(b64[l]), FLOAT_TYPE(s4_lo4[0]) * FLOAT_TYPE((qs0[l] >> 4) & 3),
fma(FLOAT_TYPE(b80[l]), FLOAT_TYPE(s4_lo4[1]) * FLOAT_TYPE((qs16[l] >> 4) & 3),
fma(FLOAT_TYPE(b96[l]), FLOAT_TYPE(s4_lo4[2]) * FLOAT_TYPE((qs0[l] >> 6) & 3),
fma(FLOAT_TYPE(b112[l]), FLOAT_TYPE(s4_lo4[3]) * FLOAT_TYPE((qs16[l] >> 6) & 3), sum1))))))));
sum2 = fma(FLOAT_TYPE(b0[l]), FLOAT_TYPE(s0_hi4[0]),
fma(FLOAT_TYPE(b16[l]), FLOAT_TYPE(s0_hi4[1]),
fma(FLOAT_TYPE(b32[l]), FLOAT_TYPE(s0_hi4[2]),
fma(FLOAT_TYPE(b48[l]), FLOAT_TYPE(s0_hi4[3]),
fma(FLOAT_TYPE(b64[l]), FLOAT_TYPE(s4_hi4[0]),
fma(FLOAT_TYPE(b80[l]), FLOAT_TYPE(s4_hi4[1]),
fma(FLOAT_TYPE(b96[l]), FLOAT_TYPE(s4_hi4[2]),
fma(FLOAT_TYPE(b112[l]), FLOAT_TYPE(s4_hi4[3]), sum2))))))));
[[unroll]] for (uint j = 0; j < NUM_COLS; ++j) {
B_TYPE_VEC2 b0 = data_b_v2[(j*p.batch_stride_b + b_offset + y_idx) / 2 + 0];
B_TYPE_VEC2 b16 = data_b_v2[(j*p.batch_stride_b + b_offset + y_idx) / 2 + 8];
B_TYPE_VEC2 b32 = data_b_v2[(j*p.batch_stride_b + b_offset + y_idx) / 2 + 16];
B_TYPE_VEC2 b48 = data_b_v2[(j*p.batch_stride_b + b_offset + y_idx) / 2 + 24];
B_TYPE_VEC2 b64 = data_b_v2[(j*p.batch_stride_b + b_offset + y_idx) / 2 + 32];
B_TYPE_VEC2 b80 = data_b_v2[(j*p.batch_stride_b + b_offset + y_idx) / 2 + 40];
B_TYPE_VEC2 b96 = data_b_v2[(j*p.batch_stride_b + b_offset + y_idx) / 2 + 48];
B_TYPE_VEC2 b112 = data_b_v2[(j*p.batch_stride_b + b_offset + y_idx) / 2 + 56];

FLOAT_TYPE sum1 = FLOAT_TYPE(0.0);
FLOAT_TYPE sum2 = FLOAT_TYPE(0.0);
[[unroll]] for (int l = 0; l < 2; ++l) {
sum1 = fma(FLOAT_TYPE(b0[l]), FLOAT_TYPE(s0_lo4[0]) * FLOAT_TYPE((qs0[l] >> 0) & 3),
fma(FLOAT_TYPE(b16[l]), FLOAT_TYPE(s0_lo4[1]) * FLOAT_TYPE((qs16[l] >> 0) & 3),
fma(FLOAT_TYPE(b32[l]), FLOAT_TYPE(s0_lo4[2]) * FLOAT_TYPE((qs0[l] >> 2) & 3),
fma(FLOAT_TYPE(b48[l]), FLOAT_TYPE(s0_lo4[3]) * FLOAT_TYPE((qs16[l] >> 2) & 3),
fma(FLOAT_TYPE(b64[l]), FLOAT_TYPE(s4_lo4[0]) * FLOAT_TYPE((qs0[l] >> 4) & 3),
fma(FLOAT_TYPE(b80[l]), FLOAT_TYPE(s4_lo4[1]) * FLOAT_TYPE((qs16[l] >> 4) & 3),
fma(FLOAT_TYPE(b96[l]), FLOAT_TYPE(s4_lo4[2]) * FLOAT_TYPE((qs0[l] >> 6) & 3),
fma(FLOAT_TYPE(b112[l]), FLOAT_TYPE(s4_lo4[3]) * FLOAT_TYPE((qs16[l] >> 6) & 3), sum1))))))));
sum2 = fma(FLOAT_TYPE(b0[l]), FLOAT_TYPE(s0_hi4[0]),
fma(FLOAT_TYPE(b16[l]), FLOAT_TYPE(s0_hi4[1]),
fma(FLOAT_TYPE(b32[l]), FLOAT_TYPE(s0_hi4[2]),
fma(FLOAT_TYPE(b48[l]), FLOAT_TYPE(s0_hi4[3]),
fma(FLOAT_TYPE(b64[l]), FLOAT_TYPE(s4_hi4[0]),
fma(FLOAT_TYPE(b80[l]), FLOAT_TYPE(s4_hi4[1]),
fma(FLOAT_TYPE(b96[l]), FLOAT_TYPE(s4_hi4[2]),
fma(FLOAT_TYPE(b112[l]), FLOAT_TYPE(s4_hi4[3]), sum2))))))));
}
temp[j][n] = fma(dall, sum1, fma(-dmin, sum2, temp[j][n]));
}
temp[n] = fma(dall, sum1, fma(-dmin, sum2, temp[n]));
}
}

// sum up partial sums and write back result
[[unroll]] for (uint n = 0; n < num_rows; ++n) {
tmpsh[n][tid] = temp[n];
}
barrier();
[[unroll]] for (uint s = BLOCK_SIZE/2; s > 0; s >>= 1) {
if (tid < s) {
[[unroll]] for (uint n = 0; n < num_rows; ++n) {
tmpsh[n][tid] += tmpsh[n][tid + s];
}
}
barrier();
}
if (tid == 0) {
[[unroll]] for (uint n = 0; n < num_rows; ++n) {
data_d[d_offset + first_row + n] = D_TYPE(tmpsh[n][0]);
}
}
reduce_result(temp, d_offset, first_row, num_rows, tid);
}

void main() {
Expand Down
Loading

0 comments on commit 905c05d

Please sign in to comment.