Skip to content

Commit

Permalink
reducing CRC_abd file size and adding adjust_batch.R file
Browse files Browse the repository at this point in the history
  • Loading branch information
renu-pal committed Nov 25, 2024
1 parent f340c26 commit 4ee8d65
Show file tree
Hide file tree
Showing 2 changed files with 323 additions and 484 deletions.
202 changes: 202 additions & 0 deletions tools/mmuphin/adjust_batch.R
Original file line number Diff line number Diff line change
@@ -0,0 +1,202 @@
#' Zero-inflated empirical Bayes adjustment of batch effect in compositional
#' feature abundance data
#'
#' \code{adjust_batch} takes as input a feature-by-sample matrix of microbial
#' abundances, and performs batch effect adjustment given provided batch and
#' optional covariate variables. It returns the batch-adjusted abundance matrix.
#' Additional options and parameters can be passed through the \code{control}
#' parameter as a list (see details).
#'
#' \code{control} should be provided as a named list of the following components
#' (can be a subset).
#' \describe{
#' \item{zero_inflation}{
#' logical. Indicates whether or not a zero-inflated model should be
#' run. Default to TRUE (zero-inflated model). If set to FALSE then the
#' correction will be similar to \code{ComBat} as provided in the \code{sva}
#' package.
#' }
#' \item{pseudo_count}{
#' numeric. Pseudo count to add feature_abd before the methods' log
#' transformation. Default to \code{NULL}, in which case \code{adjust_batch}
#' will set the pseudo count automatically to half of minimal non-zero values in
#' \code{feature_abd}.
#' }
#' \item{diagnostic_plot}{
#' character. Name for the generated diagnostic figure file. Default to
#' \code{"adjust_batch_diagnostic.pdf"}. Can be set to \code{NULL} in which
#' case no output will be generated.}
#' \item{conv}{
#' numeric. Convergence threshold for the method's iterative algorithm for
#' shrinking batch effect parameters. Default to 1e-4.
#' }
#' \item{maxit}{
#' integer. Maximum number of iterations allowed for the method's iterative
#' algorithm. Default to 1000.
#' }
#' \item{verbose}{
#' logical. Indicates whether or not verbose information will be printed.
#' }
#' }
#' @param feature_abd feature-by-sample matrix of abundances (proportions or
#' counts).
#' @param batch name of the batch variable. This variable in data should be a
#' factor variable and will be converted to so with a warning if otherwise.
#' @param covariates name(s) of covariates to adjust for in the batch correction
#' model.
#' @param data data frame of metadata, columns must include batch and covariates
#' (if specified).
#' @param control a named list of additional control parameters. See details.
#'
#' @return a list, with the following components:
#' \describe{
#' \item{feature_abd_adj}{
#' feature-by-sample matrix of batch-adjusted abundances, normalized to the
#' same per-sample total abundance as feature_abd.
#' }
#' \item{control}{list of additional control parameters used in the function
#' call.
#' }
#' }
#' @export
#' @author Siyuan Ma, \email{siyuanma@@g.harvard.edu}
#' @examples
#' data("CRC_abd", "CRC_meta")
#' CRC_abd_adj <- adjust_batch(feature_abd = CRC_abd,
#' batch = "studyID",
#' covariates = "study_condition",
#' data = CRC_meta)$feature_abd_adj
adjust_batch <- function(feature_abd,
batch,
covariates = NULL,
data,
control) {
# Check and construct controls
control <- match_control(default = control_adjust_batch,
control = control)
verbose <- control$verbose

# Check data formats
# Check feature abundance table
feature_abd <- as.matrix(feature_abd)
type_feature_abd <- check_feature_abd(feature_abd = feature_abd)
if(verbose)
message("feature_abd is ", type_feature_abd)
# Check metadata data frame
data <- as.data.frame(data)
samples <- check_samples(feature_abd = feature_abd,
data = data)
# Check batch and covariates are included in metadata data frame
if(length(batch) > 1)
stop("Only one batch variable is supported!")
df_batch <- check_metadata(data = data,
variables = batch)
df_covariates <- check_metadata(data = data,
variables = covariates)
# Check batch variable
var_batch <- check_batch(df_batch[[batch]], min_n_batch = 2)
n_batch <- nlevels(x = var_batch)
if(verbose)
message("Found ", n_batch, " batches")

# Construct batch and covariate model matrices. Check for confounding
batchmod <- construct_design(data = df_batch, with_intercept = FALSE)
# For covariates exclude the intercept term because it'ss covered by the
# batchmod columns
mod <- construct_design(data = df_covariates,
with_intercept = TRUE)[, -1, drop = FALSE]
if(!check_rank(design = mod))
stop("Covariates are confounded!")
design <- cbind(batchmod, mod)
if(!check_rank(design = design))
stop("Covariates and batch are confounded!")
if(verbose)
message("Adjusting for ", ncol(mod),
" covariate(s) or covariate(s) level(s)")

# Transform data for ComBat fit
if(is.null(control$pseudo_count)) {
pseudo_count <- set_pseudo(features = feature_abd)
if(verbose)
message("Pseudo count is not specified and set to half of minimal ",
"non-zero value: ",
format(pseudo_count, digits = 3, scientific = TRUE))
} else
pseudo_count <- check_pseudo_count(control$pseudo_count)
log_data <- transform_features(
features = normalize_features(
features = feature_abd,
normalization = "TSS",
pseudo_count = pseudo_count),
transform = "LOG")

# Identify data to adjust for
l_ind <- construct_ind(feature_abd = feature_abd,
n_batch = n_batch,
design = design,
zero_inflation = control$zero_inflation)
batch_no_correct <- apply(!l_ind$ind_gamma, 2, all)
if(any(batch_no_correct))
stop(paste0("The following batch(es) either have no present features,",
" or\nare confounded with the covariates in",
" features that are present.\nPlease remove them",
" from the data before running batch correction:\n",
paste0(levels(var_batch)[batch_no_correct], collapse = ", ")))
if(verbose)
message("Adjusting for (after filtering) ", sum(l_ind$ind_feature),
" features")

# Standardize data across features
if(verbose)
message("Standardizing data across features")
stand_fit <- fit_stand_feature(s_data = log_data,
design = design,
l_ind = l_ind)
s_data <- stand_fit$s_data
l_stand_feature <- stand_fit$l_stand_feature

# Estimate per-batch location and scale parameters
# and EB hyper-parameters
if(verbose)
message("Estimating batch difference parameters and EB priors")
params_fit <- fit_EB(s_data = s_data, l_stand_feature = l_stand_feature,
batchmod = batchmod, n_batch = n_batch,
l_ind = l_ind)

# Shrink per-batch location and scale parameters
if(verbose)
message("Performing shrinkage adjustments on batch difference parameters")
params_shrinked <- fit_shrink(s_data = s_data, l_params = params_fit,
batchmod = batchmod, n_batch = n_batch,
l_ind = l_ind,
control = control)

# Adjust the data
if(verbose)
message("Performing batch corrections")
adj_data <- adjust_EB(s_data = s_data, l_params_shrink = params_shrinked,
l_stand_feature = l_stand_feature,
batchmod = batchmod, n_batch = n_batch,
l_ind = l_ind)

# Transform adjusted data back to the original scale
# For debugging only, this shouldn't happen
if(any(is.na(adj_data)))
stop("There are missing values in the adjusted data!")
feature_abd_adj <- back_transform_abd(adj_data = adj_data,
feature_abd = feature_abd,
type_feature_abd = type_feature_abd)


# If required, generate diagnostic plots
if(!is.null(control$diagnostic_plot))
diagnostic_adjust_batch(feature_abd = feature_abd,
feature_abd_adj = feature_abd_adj,
var_batch = var_batch,
gamma_hat = params_fit$gamma_hat,
gamma_star = params_shrinked$gamma_star,
output = control$diagnostic_plot)

return(list(feature_abd_adj = feature_abd_adj,
control = control))
}
Loading

0 comments on commit 4ee8d65

Please sign in to comment.