Skip to content

Commit

Permalink
COSG (#5959)
Browse files Browse the repository at this point in the history
* Adding cosg.xml

* Adding .shed.yml

* Adding macros.xml

* Adding test data for cosg

* Update tools/cosg/macros.xml

Co-authored-by: Björn Grüning <[email protected]>

* Update tools/cosg/cosg.xml

Co-authored-by: Björn Grüning <[email protected]>

* Update tools/cosg/cosg.xml

Co-authored-by: Björn Grüning <[email protected]>

* Update tools/cosg/cosg.xml

Co-authored-by: Björn Grüning <[email protected]>

* Update tools/cosg/cosg.xml

Co-authored-by: Björn Grüning <[email protected]>

* Update tools/cosg/cosg.xml

Co-authored-by: Björn Grüning <[email protected]>

* Update tools/cosg/cosg.xml

Co-authored-by: Björn Grüning <[email protected]>

* changes to cosg.xml

* fixing linting cosg

* Changes to macros of cosg

* Changes to wrapper for cosg

* Removing old data

* Adding new highly reduced data

* Changing version command

* Update tools/cosg/macros.xml

Co-authored-by: Björn Grüning <[email protected]>

* Changes to macros

* Change sim_size to asserts

* Bugfix

---------

Co-authored-by: Björn Grüning <[email protected]>
  • Loading branch information
heylf and bgruening authored May 29, 2024
1 parent 5ae40d4 commit 2e477de
Show file tree
Hide file tree
Showing 10 changed files with 328 additions and 0 deletions.
11 changes: 11 additions & 0 deletions tools/cosg/.shed.yml
Original file line number Diff line number Diff line change
@@ -0,0 +1,11 @@
name: cosg
owner: iuc
description: "Marker gene identification for single-cell sequencing data using COSG."
homepage_url: https://github.com/genecell/COSG
long_description: |
Accurate and fast cell marker gene identification with COSG. COSG is a cosine similarity-based method for more accurate and scalable marker gene identification.
remote_repository_url: https://github.com/galaxyproject/tools-iuc/tree/master/tools/cosg/
type: unrestricted
categories:
- Transcriptomics
- Sequence Analysis
202 changes: 202 additions & 0 deletions tools/cosg/cosg.xml
Original file line number Diff line number Diff line change
@@ -0,0 +1,202 @@
<tool id="cosg" name="COSG" version="@TOOL_VERSION@+galaxy@VERSION_SUFFIX@" profile="@profile@">
<description>Cell marker gene identification</description>
<macros>
<import>macros.xml</import>
</macros>
<expand macro="requirements">
</expand>
<expand macro="version_command"/>
<command detect_errors="exit_code"><![CDATA[
@CMD@
]]></command>
<configfiles>
<configfile name="script_file"><![CDATA[
@CMD_imports@
@CMD_read_inputs@
#if $method_options.groups != 'all'
#set $method_options.groups=[$groups]
#end if
cosg.cosg(adata,
groupby='$method_options.groupby',
groups='$method_options.groups',
n_genes_user=$method_options.n_genes_user,
mu=$advanced_options.mu,
remove_lowly_expressed=$advanced_options.filter_expression.remove_lowly_expressed,
#if $advanced_options.filter_expression.remove_lowly_expressed == "True"
expressed_pct=$advanced_options.filter_expression.expressed_pct,
#end ifs
key_added='$advanced_options.key_added',
use_raw=$advanced_options.layer_selection.use_raw,
#if $advanced_options.layer_selection.use_raw == "False"
#if $advanced_options.layer_selection.layer
layer='$advanced_options.layer_selection.layer',
#end if
#end if
reference='$advanced_options.reference'
)
df=pd.DataFrame(adata.uns['cosg']['names']).T
df.to_csv('marker.tsv', sep='\t', index=True)
@CMD_anndata_write_outputs@
]]></configfile>
</configfiles>
<inputs>
<expand macro="inputs_anndata"/>
<section name="method_options" title="Method Options" expanded="true">
<param argument="groupby" type="text" value="" optional="false" label="The key of the cell groups in .obs"/>
<param argument="groups" type="text" value="all" optional="false" label="Subset of cell groups" help="e.g. 'g1','g2','g3'."/>
<param argument="n_genes_user" type="integer" value="50" min="1" label="The number of genes that appear in the returned tables"/>
</section>
<section name="advanced_options" title="Advanced Options">
<param argument="mu" type="float" value="1.0" min="0.0" max="1.0" label="The penalty restricting marker genes expressing in non-target cell groups" help="Larger value represents more strict restrictions. mu should be >= 0, and by default, mu = 1."/>
<conditional name="filter_expression">
<param name="remove_lowly_expressed" type="select" label="Remove lowly expressed genes" help="If yes, genes that express a percentage of target cells smaller than a specific value (`expressed_pct`) are not considered as marker genes for the target cells.">
<option value="False">No</option>
<option value="True">Yes</option>
</param>
<when value="False"/>
<when value="True">
<param argument="expressed_pct" type="float" value="0.1" min="0.01" max="1.0" label="Percentage of target cells" help="Genes that express a percentage of target cells smaller than a specific value (`expressed_pct`) are not considered as marker genes for the target cells."/>
</when>
</conditional>
<param argument="key_added" type="text" value="cosg" optional="false" label="The key in adata.uns information is saved to.">
<validator type="empty_field"/>
</param>
<conditional name="layer_selection">
<param name="use_raw" type="select" label="Use raw attribute of adata if present to perform tests on." help="If use_raw is set to True then adata.raw.X if it exists.">
<option value="False">No</option>
<option value="True">Yes</option>
</param>
<when value="False">
<param argument="layer" type="text" value="" label="Key from adata.layers whose value will be used to perform tests on." help="If empty then adata.X will be used. If use_raw is set to True then adata.raw.X. If layers specified then use adata.layers[layer]."/>
</when>
<when value="True"/>
</conditional>
<param argument="reference" type="text" value="rest" optional="false" label="If a group identifier, compare with respect to this group." help=" If you use the keyword 'rest', compare each group to the union of the rest of the group.">
<validator type="empty_field"/>
</param>
</section>
<expand macro="inputs_common_advanced"/>
</inputs>
<outputs>
<expand macro="anndata_outputs"/>
<data name="marker_out" format="tabular" from_work_dir="marker.tsv" label="${tool.name} on ${on_string}: Markers"/>
</outputs>
<tests>
<test expect_num_outputs="3">
<!-- test 1 -->
<param name="adata" value="tl.rank_genes_groups.newton-cg.pbmc68k_highly_reduced.h5ad" />
<param name="groupby" value="bulk_labels"/>
<section name="advanced_common">
<param name="show_log" value="true" />
</section>
<output name="hidden_output">
<assert_contents>
<has_text_matching expression="cosg.cosg"/>
<has_text_matching expression="groupby='bulk_labels'"/>
<has_text_matching expression="groups='all'"/>
<has_text_matching expression="n_genes_user=50"/>
<has_text_matching expression="mu=1.0"/>
<has_text_matching expression="remove_lowly_expressed=False"/>
<has_text_matching expression="key_added='cosg'"/>
<has_text_matching expression="use_raw=False"/>
<has_text_matching expression="reference='rest'"/>
</assert_contents>
</output>
<output name="anndata_out" file="cosg.rank_genes_groups.newton-cg.pbmc68k_highly_reduced_1.h5ad" ftype="h5ad">
<assert_contents>
<has_h5_keys keys="obs, var, uns" />
</assert_contents>
</output>
<output name="marker_out" file="marker_1.tsv" ftype="tabular" compare="sim_size">
<assert_contents>
<has_n_columns n="51" />
</assert_contents>
</output>
</test>
<test expect_num_outputs="3">
<!-- test 2 -->
<param name="adata" value="tl.rank_genes_groups.newton-cg.pbmc68k_highly_reduced.h5ad" />
<param name="groupby" value="louvain"/>
<param name="remove_lowly_expressed" value="True" />
<section name="advanced_common">
<param name="show_log" value="true" />
</section>
<output name="hidden_output">
<assert_contents>
<has_text_matching expression="cosg.cosg"/>
<has_text_matching expression="groupby='louvain'"/>
<has_text_matching expression="groups='all'"/>
<has_text_matching expression="n_genes_user=50"/>
<has_text_matching expression="mu=1.0"/>
<has_text_matching expression="remove_lowly_expressed=True"/>
<has_text_matching expression="expressed_pct=0.1"/>
<has_text_matching expression="key_added='cosg'"/>
<has_text_matching expression="use_raw=False"/>
<has_text_matching expression="reference='rest'"/>
</assert_contents>
</output>
<output name="anndata_out" file="cosg.rank_genes_groups.newton-cg.pbmc68k_highly_reduced_2.h5ad" ftype="h5ad">
<assert_contents>
<has_h5_keys keys="obs, var, uns" />
</assert_contents>
</output>
<output name="marker_out" file="marker_2.tsv" ftype="tabular">
<assert_contents>
<has_n_columns n="51" />
</assert_contents>
</output>
</test>
<test expect_num_outputs="3">
<!-- test 3 -->
<param name="adata" value="tl.rank_genes_groups.newton-cg.pbmc68k_highly_reduced.h5ad" />
<param name="groupby" value="bulk_labels"/>
<param name="use_raw" value="True"/>
<section name="advanced_common">
<param name="show_log" value="true" />
</section>
<output name="hidden_output">
<assert_contents>
<has_text_matching expression="cosg.cosg"/>
<has_text_matching expression="groupby='bulk_labels'"/>
<has_text_matching expression="groups='all'"/>
<has_text_matching expression="n_genes_user=50"/>
<has_text_matching expression="mu=1.0"/>
<has_text_matching expression="remove_lowly_expressed=False"/>
<has_text_matching expression="key_added='cosg'"/>
<has_text_matching expression="use_raw=True"/>
<has_text_matching expression="reference='rest'"/>
</assert_contents>
</output>
<output name="anndata_out" file="cosg.rank_genes_groups.newton-cg.pbmc68k_highly_reduced_3.h5ad" ftype="h5ad">
<assert_contents>
<has_h5_keys keys="obs, var, uns" />
</assert_contents>
</output>
<output name="marker_out" file="marker_3.tsv" ftype="tabular">
<assert_contents>
<has_n_columns n="51" />
</assert_contents>
</output>
</test>
</tests>
<help><![CDATA[
Marker gene identification for single-cell sequencing data using COSG.
============================================================================================================
Accurate and fast cell marker gene identification with COSG
COSG is a cosine similarity-based method for more accurate and scalable marker gene identification.
- COSG is a general method for cell marker gene identification across different data modalities, e.g., scRNA-seq, scATAC-seq and spatially resolved transcriptome data.
- Marker genes or genomic regions identified by COSG are more indicative and with greater cell-type specificity.
- COSG is ultrafast for large-scale datasets, and is capable of identifying marker genes for one million cells in less than two minutes.
Here is the R version for COSG, and the Python version is hosted in https://github.com/genecell/COSG.
]]></help>
<expand macro="citations"/>
</tool>
85 changes: 85 additions & 0 deletions tools/cosg/macros.xml
Original file line number Diff line number Diff line change
@@ -0,0 +1,85 @@
<macros>
<token name="@TOOL_VERSION@">1.0.1</token>
<token name="@VERSION_SUFFIX@">0</token>
<token name="@profile@">22.05</token>
<xml name="requirements">
<requirements>
<requirement type="package" version="@TOOL_VERSION@">cosg</requirement>
<requirement type="package" version="1.9.8">scanpy</requirement>
<requirement type="package" version="1.5.3">pandas</requirement>
<requirement type="package" version="3.7">matplotlib</requirement>
<requirement type="package" version="0.12.2">seaborn</requirement>
<yield />
</requirements>
</xml>
<xml name="creators">
<creator>
<organization name="European Galaxy Team" url="https://galaxyproject.org/eu/" />
</creator>
</xml>
<xml name="citations">
<citations>
<citation type="doi">10.1093/bib/bbab579</citation>
<citation type="doi">10.1093/gigascience/giaa102</citation>
</citations>
</xml>
<xml name="version_command">
<version_command><![CDATA[python -c "import cosg;import importlib.metadata;print('%s' % importlib.metadata.version('cosg'))"]]></version_command>
</xml>
<token name="@CMD@"><![CDATA[
cp '$adata' 'anndata.h5ad' &&
cat '$script_file' > '$hidden_output' &&
python '$script_file' >> '$hidden_output' &&
ls . >> '$hidden_output' &&
touch 'anndata_info.txt' &&
cat 'anndata_info.txt' @CMD_prettify_stdout@
]]>
</token>
<token name="@CMD_imports@"><![CDATA[
import scanpy as sc
import pandas as pd
import numpy as np
import cosg
]]>
</token>
<xml name="sanitize_query" token_validinitial="string.printable">
<sanitizer>
<valid initial="@VALIDINITIAL@">
<remove value="&apos;" />
</valid>
</sanitizer>
</xml>
<xml name="sanitize_vectors" token_validinitial="string.digits">
<sanitizer>
<valid initial="@VALIDINITIAL@">
<add value=","/>
</valid>
</sanitizer>
</xml>
<xml name="inputs_anndata">
<param name="adata" type="data" format="h5ad" label="Annotated data matrix"/>
</xml>
<token name="@CMD_read_inputs@"><![CDATA[
adata = sc.read_h5ad('anndata.h5ad')
]]>
</token>
<xml name="inputs_common_advanced">
<section name="advanced_common" title="Advanced Output Options" expanded="false">
<param name="show_log" type="boolean" checked="false" label="Output Log?" />
</section>
</xml>
<xml name="anndata_outputs">
<data name="anndata_out" format="h5ad" from_work_dir="anndata.h5ad" label="${tool.name} on ${on_string}: Annotated data matrix"/>
<data name="hidden_output" format="txt" label="Log file" >
<filter>advanced_common['show_log']</filter>
</data>
</xml>
<token name="@CMD_anndata_write_outputs@"><![CDATA[
adata.write_h5ad('anndata.h5ad')
with open('anndata_info.txt','w', encoding='utf-8') as ainfo:
print(adata, file=ainfo)
]]>
</token>
<token name="@CMD_prettify_stdout@"><![CDATA[ | sed -r '1 s|AnnData object with (.+) = (.*)\s*|\1: \2|g' | sed "s|'||g" | sed -r 's|^\s*(.*):\s(.*)|[\1]\n- \2|g' | sed 's|, |\n- |g'
]]></token>
</macros>
Binary file not shown.
Binary file not shown.
Binary file not shown.
11 changes: 11 additions & 0 deletions tools/cosg/test-data/marker_1.tsv
Original file line number Diff line number Diff line change
@@ -0,0 +1,11 @@
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
CD14+ Monocyte PILRA PSAP CD68 TMEM176B FTL NPC2 LST1 FCGR3A FCER1G CEBPB FCN1 SERPINA1 OAZ1 CFD FTH1 HCK AIF1 SAT1 CTSS S100A11 MS4A7 TYROBP COTL1 STXBP2 RP11-290F20.3 S100A4 IFITM2 SPI1 DUSP1 SESN2 IFITM3 MPP1 GALE CORO1B RP11-390E23.6 VIMP RSBN1L-AS1 CHD4 CFP GSTP1 PFN1 FCGRT ADTRP ARHGDIB AMICA1 HLA-DRB5 CST3 GRN HLA-DPA1 SSR3
CD19+ B TNFRSF13B CD79B SMARCB1 PNOC CCDC50 AL928768.3 BANK1 MS4A1 CD79A ISG20 IGLL5 TNFRSF17 KIAA0125 TPD52 PEBP1 FKBP11 CCDC132 SUB1 POU2AF1 MZB1 PTPRCAP UBE2J1 BLK SPIB DERL3 FAM63B MPHOSPH9 IGJ FCRLA XBP1 NCF1 SSR3 CD52 TSHZ2 PDLIM1 VIMP SSR4 S1PR4 SELL HMGA1 NUCB2 JUN CD27 ARHGDIB GYPC CALR ADTRP BTG1 EXOG RARRES3
CD34+ PRSS57 C19orf77 SPINK2 RP11-620J15.3 SNHG7 CYTL1 EGFL7 NGFRAP1 SOX4 NFE2 EGR1 RP3-467N11.1 H1FX CDK6 SERPINB1 SPINT2 HMGA1 IL1B NUCB2 RPLP0 IGFBP7 RPLP1 ATXN7L3B RPS3 C1orf228 KIAA0125 RPL3 SYPL1 CD63 LDHB SEPT1 JUN FAM101B PRKCQ-AS1 MATK PEBP1 SELL ITM2A SSR3 SPON2 XBP1 UBE2J1 VIMP GYPC STK17A STMN1 VIM MZB1 HOPX CD99
CD4+/CD25 T Reg IL32 SPOCK2 ACTG1 CD2 CD3D GPR171 ARHGDIB ACOX1 MAL SIT1 GIMAP4 AES CD52 SEPT1 TMSB10 LAT STMN1 LINC00402 CD27 TSHZ2 S1PR4 CD3E PFN1 CD99 AQP3 PTPRCAP CD3G LY9 LCK CD247 S100A4 CCR7 TTC39C CORO1B MPHOSPH9 FYB RPSA FLT3LG B2M GIMAP7 PRKCQ-AS1 SELL BTG1 CCDC132 GYPC DENND2D LDHB IL7R ITM2A RPLP0
CD4+/CD45RA+/CD25- Naive T EAF2 GNG7 SSR4 CALR DERL3 MANF IGJ XBP1 ATXN7L3B SSR3 UBE2J1 CD79A MZB1 RP3-467N11.1 TNFRSF17 NCF1 CDK6 SUB1 POU2AF1 AL928768.3 FKBP11 VIMP GYPC JUN CD27 PEBP1 SMARCB1 FLT3LG RPLP1 RPLP0 CCDC50 ISG20 IGLL5 HCST GSTP1 GPX1 CD52 VIM PTPRCAP FCGRT CD74 B2M RPL3 CYTL1 SPINK2 PRSS57 C19orf77 RP11-620J15.3 FAM101B CCDC132
CD4+/CD45RO+ Memory RNF138 NOSIP IFITM1 LCK RARRES3 ALOX5AP FAM63B RAB3IP GZMK CD3G SEPT1 LDHB SELL CD3D EXOG RPSA CD247 AES CD52 TMSB10 NUCB2 DENND2D RPL3 RPLP1 ACTG1 FYB GIMAP7 CORO1B LY9 CD7 PFN1 RPS3 GYPC CD2 ARHGDIB IL32 RPLP0 CD99 CD3E GIMAP4 HCST B2M LAT ISG20 ITM2A FKBP11 SERPINB1 STK17A CCR7 PTPRCAP
CD56+ NK CST7 SPON2 HOPX GNLY NKG7 CTSW KLRC2 CD7 MATK PCIF1 CLIC3 FGFBP2 SYPL1 GZMB C9orf142 PRF1 CD247 HCST GZMA GZMH STMN1 ALOX5AP CD63 CD99 IGFBP7 GZMM CCL5 B2M DENND2D GIMAP7 RARRES3 SIT1 IFITM1 PFN1 EXOG XBP1 IFITM2 GIMAP4 VIMP STK17A LCK GZMK SEPT1 SSR3 CD8A CD3G SPOCK2 RPS3 LDHB IL32
CD8+ Cytotoxic T FAM101B ADTRP GZMK HCST LAT EGR1 CD8B CCL5 RPL3 LINC00402 FGFBP2 GZMM RPS3 CD3E GYPC DENND2D C9orf142 GZMA SEPT1 JUN FYB CD8A SELL ALOX5AP CD3G STK17A AQP3 C1orf228 CD3D HOPX NKG7 CD2 NGFRAP1 RPLP1 RPSA CCR7 IL7R SPON2 PRF1 RARRES3 PRKCQ-AS1 FKBP11 MANF CTSW GNLY CD27 LDHB MAL LTB RPLP0
CD8+/CD45RA+ Naive Cytotoxic RP11-291B21.2 CD8A CD8B RSBN1L-AS1 GIMAP5 GZMM GALE CCR7 STK17A RAB3IP GZMH GIMAP7 CD3E C1orf228 LCK CCL5 PEBP1 CD27 GYPC LDHB RNF34 CD99 CD3G PFN1 IL7R CD2 C9orf142 TMSB10 NGFRAP1 S1PR4 ITM2A CD7 RPS3 IL32 FYB IFITM1 CD52 LAT GIMAP4 MAL STMN1 NOSIP RARRES3 SPOCK2 ACTG1 PRF1 CD3D RPLP1 SELL GZMA
Dendritic HLA-DQB1 CST3 HLA-DRB1 HLA-DQA2 HLA-DQA1 LYZ HLA-DPB1 HLA-DPA1 HLA-DMA HLA-DRA VIM CD74 ALDH2 FCER1A GPX1 HLA-DRB5 LGALS2 MNDA FCGRT GRN HLA-DMB FOS CPVL CLEC10A AMICA1 CFP LY86 GSTP1 RP11-473M20.7 IL1B GSN SPINT2 CCDC163P IGFBP7 EXOG DUSP1 CD63 COTL1 FTH1 SPI1 TYROBP SPIB S100A11 OAZ1 CTSS CCDC50 AIF1 SERPINB1 TMSB10 PCIF1
Loading

0 comments on commit 2e477de

Please sign in to comment.