Skip to content

fypc/LightGraphsFlows.jl

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

52 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

LightGraphsFlows

Build Status Coverage Status codecov.io

Flow algorithms on top of LightGraphs.jl, including maximum_flow, multiroute_flow and mincost_flow. See Maximum flow problem for a detailed description of the problem.

Documentation for this package is available here. For an overview of JuliaGraphs, see this page.

Usage

Maxflow

julia> using LightGraphs, LightGraphsFlows
julia> const LG = LightGraphs
julia> flow_graph = LG.DiGraph(8) # Create a flow graph
julia> flow_edges = [
    (1,2,10),(1,3,5),(1,4,15),(2,3,4),(2,5,9),
    (2,6,15),(3,4,4),(3,6,8),(4,7,16),(5,6,15),
    (5,8,10),(6,7,15),(6,8,10),(7,3,6),(7,8,10)
]

julia> capacity_matrix = zeros(Int, 8, 8)  # Create a capacity matrix

julia> for e in flow_edges
    u, v, f = e
    LG.add_edge!(flow_graph, u, v)
    capacity_matrix[u,v] = f
end

julia> f, F = maximum_flow(flow_graph, 1, 8) # Run default maximum_flow (push-relabel) without the capacity_matrix

julia> f, F = maximum_flow(flow_graph, 1, 8, capacity_matrix) # Run default maximum_flow with the capacity_matrix

julia> f, F = maximum_flow(flow_graph, 1, 8, capacity_matrix, algorithm=EdmondsKarpAlgorithm()) # Run Edmonds-Karp algorithm

julia> f, F = maximum_flow(flow_graph, 1, 8, capacity_matrix, algorithm=DinicAlgorithm()) # Run Dinic's algorithm

julia> f, F, labels = maximum_flow(flow_graph, 1, 8, capacity_matrix, algorithm=BoykovKolmogorovAlgorithm()) # Run Boykov-Kolmogorov algorithm

Multi-route flow

julia> using LightGraphs, LightGraphsFlows
julia> const LG =  LightGraphs

julia> flow_graph = LG.DiGraph(8) # Create a flow graph

julia> flow_edges = [
(1, 2, 10), (1, 3, 5),  (1, 4, 15), (2, 3, 4),  (2, 5, 9),
(2, 6, 15), (3, 4, 4),  (3, 6, 8),  (4, 7, 16), (5, 6, 15),
(5, 8, 10), (6, 7, 15), (6, 8, 10), (7, 3, 6),  (7, 8, 10)
]

julia> capacity_matrix = zeros(Int, 8, 8) # Create a capacity matrix

julia> for e in flow_edges
    u, v, f = e
    LG.add_edge!(flow_graph, u, v)
    capacity_matrix[u, v] = f
end

julia> f, F = multiroute_flow(flow_graph, 1, 8, capacity_matrix, routes = 2) # Run default multiroute_flow with an integer number of routes = 2

julia> f, F = multiroute_flow(flow_graph, 1, 8, capacity_matrix, routes = 1.5) # Run default multiroute_flow with a noninteger number of routes = 1.5

julia> points = multiroute_flow(flow_graph, 1, 8, capacity_matrix) # Run default multiroute_flow for all the breaking points values

julia> f, F = multiroute_flow(points, 1.5) # Then run multiroute flow algorithm for any positive number of routes

julia> f, F, labels = multiroute_flow(flow_graph, 1, 8, capacity_matrix, flow_algorithm = BoykovKolmogorovAlgorithm(), routes = 2) # Run multiroute flow algorithm using Boykov-Kolmogorov algorithm as maximum_flow routine

Mincost flow

Mincost flow is solving a linear optimization problem and thus requires a LP optimizer defined by MathOptInterface.jl.

julia> using SparseArrays: spzeros
julia> import Clp

julia> using LightGraphs, LightGraphsFlows
julia> const LG =  LightGraphs

julia> g = LG.DiGraph(6)
julia> LG.add_edge!(g, 5, 1)
julia> LG.add_edge!(g, 5, 2)
julia> LG.add_edge!(g, 3, 6)
julia> LG.add_edge!(g, 4, 6)
julia> LG.add_edge!(g, 1, 3)
julia> LG.add_edge!(g, 1, 4)
julia> LG.add_edge!(g, 2, 3)
julia> LG.add_edge!(g, 2, 4)
julia> cost = zeros(6,6)
julia> cost[1,3] = 10.
julia> cost[1,4] = 5.
julia> cost[2,3] = 2.
julia> cost[2,4] = 2.

# v2 -> sink have demand of one
julia> demand = spzeros(6,6)
julia> demand[3,6] = 1
julia> demand[4,6] = 1
julia> node_demand = spzeros(6)
julia> capacity = ones(6,6)

# returns the sparse flow matrix
julia> flow = mincost_flow(g, node_demand, capacity, cost, Clp.Optimizer, edge_demand=demand, source_nodes=[5], sink_nodes=[6])

About

Flow algorithms on LightGraphs

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Julia 100.0%