-
Notifications
You must be signed in to change notification settings - Fork 48
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
docs: build and run image with configs
Signed-off-by: Anh-Uong <[email protected]>
- Loading branch information
Showing
1 changed file
with
164 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,164 @@ | ||
# Building fms-hf-tuning as an Image | ||
|
||
The Dockerfile provides a way of running fms-hf-tuning SFT Trainer. It installs the dependencies needed and adds two additional scripts that helps to parse arguments to pass to SFT Trainer. The `accelerate_launch.py` script is run by default when running the image to trigger SFT trainer for single or multi GPU by parsing arguments and running `accelerate launch launch_training.py`. | ||
|
||
## Configuration | ||
|
||
The scripts accept a JSON formatted config which are set by environment variables. `SFT_TRAINER_CONFIG_JSON_PATH` can be set to the mounted path of the JSON config. Alternatively, `SFT_TRAINER_CONFIG_JSON_ENV_VAR` can be set to the encoded JSON config using the below function: | ||
|
||
```py | ||
import base64 | ||
|
||
def encode_json(my_json_string): | ||
base64_bytes = base64.b64encode(my_json_string.encode("ascii")) | ||
txt = base64_bytes.decode("ascii") | ||
return txt | ||
``` | ||
|
||
The keys for the JSON config are all of the flags available to use with [SFT Trainer](https://huggingface.co/docs/trl/sft_trainer#trl.SFTTrainer). | ||
|
||
For configuring `accelerate launch`, use key `multiGPU` and pass the set of flags accepted by [accelerate launch](https://huggingface.co/docs/accelerate/package_reference/cli#accelerate-launch). | ||
|
||
For example, the below config is used for running with two GPUs and FSDP for PEFT tuning: | ||
|
||
Note that `num_processes` which is the total number of processes to be launched in parallel,should match the number of GPUs to run on. | ||
|
||
```json | ||
{ | ||
"multiGPU": { | ||
"num_machines": 1, | ||
"main_process_port": 1234, | ||
"num_processes": 2, | ||
"use_fsdp": true, | ||
"fsdp_backward_prefetch_policy": "TRANSFORMER_BASED_WRAP", | ||
"fsdp_sharding_strategy": 1, | ||
"fsdp_state_dict_type": "FULL_STATE_DICT", | ||
"fsdp_cpu_ram_efficient_loading": true, | ||
"fsdp_sync_module_states": true | ||
}, | ||
"model_name_or_path": "/llama/7B", | ||
"training_data_path": "/data/twitter_complaints.json", | ||
"output_dir": "/output/llama-7b-pt-multigpu", | ||
"num_train_epochs": 5.0, | ||
"per_device_train_batch_size": 4, | ||
"per_device_eval_batch_size": 4, | ||
"gradient_accumulation_steps": 4, | ||
"save_strategy": "epoch", | ||
"learning_rate": 0.03, | ||
"weight_decay": 0.0, | ||
"lr_scheduler_type": "cosine", | ||
"logging_steps": 1.0, | ||
"packing": false, | ||
"include_tokens_per_second": true, | ||
"response_template": "\n### Label:", | ||
"dataset_text_field": "output", | ||
"use_flash_attn": false, | ||
"torch_dtype": "bfloat16", | ||
"tokenizer_name_or_path": "/llama/7B" | ||
} | ||
``` | ||
|
||
When `multiGPU` is set, the [FSDP config](https://github.com/foundation-model-stack/fms-hf-tuning/blob/main/fixtures/accelerate_fsdp_defaults.yaml) is used by default. Any of these values can be overwritten by passing in flags via the JSON config or by passing in your own config file using key `config_file`. | ||
|
||
If `multiGPU` is set and `num_processes` is not explicitly set, the number of processes/GPUs will be determined by the number of GPUs available via `torch.cuda.device_count()`. | ||
|
||
If `multiGPU` is not set, the script will assume single-GPU and run with `num_processes=1`. The number of GPUs used can also be set by setting environment variable `CUDA_VISIBLE_DEVICES`. | ||
|
||
|
||
## Building the Image | ||
|
||
With docker, build the image with: | ||
|
||
```sh | ||
docker build . -t sft-trainer:mytag | ||
``` | ||
|
||
## Running the Image | ||
|
||
Run sft-trainer-image with the JSON env var and mounts set up. | ||
|
||
```sh | ||
docker run -v config.json:/app/config.json -v $MODEL_PATH:/model -v $TRAINING_DATA_PATH:/data/twitter_complaints.json --env SFT_TRAINER_CONFIG_JSON_PATH=/app/config.json sft-trainer:mytag | ||
``` | ||
|
||
This will run `accelerate_launch.py` with the JSON config passed. | ||
|
||
An example Kubernetes Pod for deploying sft-trainer which requires creating PVCs with the model and input dataset and any mounts needed for the outputted tuned model: | ||
|
||
```yaml | ||
apiVersion: v1 | ||
kind: ConfigMap | ||
metadata: | ||
name: sft-trainer-config | ||
data: | ||
config.json: | | ||
{ | ||
"multiGPU": { | ||
"num_machines": 1, | ||
"main_process_port": 1234, | ||
"num_processes": 2, | ||
"use_fsdp": true, | ||
"fsdp_backward_prefetch_policy": "TRANSFORMER_BASED_WRAP", | ||
"fsdp_sharding_strategy": 1, | ||
"fsdp_state_dict_type": "FULL_STATE_DICT", | ||
"fsdp_cpu_ram_efficient_loading": true, | ||
"fsdp_sync_module_states": true | ||
}, | ||
"model_name_or_path": "/llama/7B", | ||
"training_data_path": "/data/twitter_complaints.json", | ||
"output_dir": "/output/llama-7b-pt-multigpu", | ||
"num_train_epochs": 5.0, | ||
"per_device_train_batch_size": 4, | ||
"per_device_eval_batch_size": 4, | ||
"gradient_accumulation_steps": 4, | ||
"save_strategy": "epoch", | ||
"learning_rate": 0.03, | ||
"weight_decay": 0.0, | ||
"lr_scheduler_type": "cosine", | ||
"logging_steps": 1.0, | ||
"packing": false, | ||
"include_tokens_per_second": true, | ||
"response_template": "\n### Label:", | ||
"dataset_text_field": "output", | ||
"use_flash_attn": false, | ||
"torch_dtype": "bfloat16", | ||
"tokenizer_name_or_path": "/llama/7B" | ||
} | ||
--- | ||
apiVersion: v1 | ||
kind: Pod | ||
metadata: | ||
name: sft-trainer-test | ||
spec: | ||
containers: | ||
env: | ||
- name: SFT_TRAINER_CONFIG_JSON_PATH | ||
value: /config/config.json | ||
image: sft-trainer:mytag | ||
imagePullPolicy: IfNotPresent | ||
name: tuning-test | ||
resources: | ||
limits: | ||
nvidia.com/gpu: "1" | ||
requests: | ||
nvidia.com/gpu: "1" | ||
volumeMounts: | ||
- mountPath: /data/input | ||
name: input-data | ||
- mountPath: /data/output | ||
name: output-data | ||
- mountPath: /config | ||
name: sft-trainer-config | ||
restartPolicy: Never | ||
terminationGracePeriodSeconds: 30 | ||
volumes: | ||
- name: input-data | ||
persistentVolumeClaim: | ||
claimName: input-pvc | ||
- name: output-data | ||
persistentVolumeClaim: | ||
claimName: output-pvc | ||
- name: sft-trainer-config | ||
configMap: | ||
name: sft-trainer-config | ||
``` |