-
Notifications
You must be signed in to change notification settings - Fork 48
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #69 from tharapalanivel/trainer_image
Initial commit for trainer image
- Loading branch information
Showing
3 changed files
with
286 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -7,7 +7,6 @@ durations/* | |
coverage*.xml | ||
dist | ||
htmlcov | ||
build | ||
test | ||
|
||
# IDEs | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,118 @@ | ||
FROM registry.access.redhat.com/ubi9/ubi AS release | ||
|
||
ARG CUDA_VERSION=11.8.0 | ||
ARG USER=tuning | ||
ARG USER_UID=1000 | ||
|
||
USER root | ||
|
||
RUN dnf remove -y --disableplugin=subscription-manager \ | ||
subscription-manager \ | ||
# we install newer version of requests via pip | ||
python3.11-requests \ | ||
&& dnf install -y make \ | ||
# to help with debugging | ||
procps \ | ||
&& dnf clean all | ||
|
||
ENV LANG=C.UTF-8 \ | ||
LC_ALL=C.UTF-8 | ||
|
||
ENV CUDA_VERSION=$CUDA_VERSION \ | ||
NV_CUDA_LIB_VERSION=11.8.0-1 \ | ||
NVIDIA_VISIBLE_DEVICES=all \ | ||
NVIDIA_DRIVER_CAPABILITIES=compute,utility \ | ||
NV_CUDA_CUDART_VERSION=11.8.89-1 \ | ||
NV_CUDA_COMPAT_VERSION=520.61.05-1 | ||
|
||
RUN dnf config-manager \ | ||
--add-repo https://developer.download.nvidia.com/compute/cuda/repos/rhel9/x86_64/cuda-rhel9.repo \ | ||
&& dnf install -y \ | ||
cuda-cudart-11-8-${NV_CUDA_CUDART_VERSION} \ | ||
cuda-compat-11-8-${NV_CUDA_COMPAT_VERSION} \ | ||
&& echo "/usr/local/nvidia/lib" >> /etc/ld.so.conf.d/nvidia.conf \ | ||
&& echo "/usr/local/nvidia/lib64" >> /etc/ld.so.conf.d/nvidia.conf \ | ||
&& dnf clean all | ||
|
||
ENV CUDA_HOME="/usr/local/cuda" \ | ||
PATH="/usr/local/nvidia/bin:${CUDA_HOME}/bin:${PATH}" \ | ||
LD_LIBRARY_PATH="/usr/local/nvidia/lib:/usr/local/nvidia/lib64:$CUDA_HOME/lib64:$CUDA_HOME/extras/CUPTI/lib64:${LD_LIBRARY_PATH}" | ||
|
||
|
||
ENV NV_NVTX_VERSION=11.8.86-1 \ | ||
NV_LIBNPP_VERSION=11.8.0.86-1 \ | ||
NV_LIBCUBLAS_VERSION=11.11.3.6-1 \ | ||
NV_LIBNCCL_PACKAGE_VERSION=2.15.5-1+cuda11.8 | ||
|
||
RUN dnf config-manager \ | ||
--add-repo https://developer.download.nvidia.com/compute/cuda/repos/rhel9/x86_64/cuda-rhel9.repo \ | ||
&& dnf install -y \ | ||
cuda-libraries-11-8-${NV_CUDA_LIB_VERSION} \ | ||
cuda-nvtx-11-8-${NV_NVTX_VERSION} \ | ||
libnpp-11-8-${NV_LIBNPP_VERSION} \ | ||
libcublas-11-8-${NV_LIBCUBLAS_VERSION} \ | ||
libnccl-${NV_LIBNCCL_PACKAGE_VERSION} \ | ||
&& dnf clean all | ||
|
||
ENV NV_CUDA_CUDART_DEV_VERSION=11.8.89-1 \ | ||
NV_NVML_DEV_VERSION=11.8.86-1 \ | ||
NV_LIBCUBLAS_DEV_VERSION=11.11.3.6-1 \ | ||
NV_LIBNPP_DEV_VERSION=11.8.0.86-1 \ | ||
NV_LIBNCCL_DEV_PACKAGE_VERSION=2.15.5-1+cuda11.8 | ||
|
||
RUN dnf config-manager \ | ||
--add-repo https://developer.download.nvidia.com/compute/cuda/repos/rhel9/x86_64/cuda-rhel9.repo \ | ||
&& dnf install -y \ | ||
cuda-command-line-tools-11-8-${NV_CUDA_LIB_VERSION} \ | ||
cuda-libraries-devel-11-8-${NV_CUDA_LIB_VERSION} \ | ||
cuda-minimal-build-11-8-${NV_CUDA_LIB_VERSION} \ | ||
cuda-cudart-devel-11-8-${NV_CUDA_CUDART_DEV_VERSION} \ | ||
cuda-nvml-devel-11-8-${NV_NVML_DEV_VERSION} \ | ||
libcublas-devel-11-8-${NV_LIBCUBLAS_DEV_VERSION} \ | ||
libnpp-devel-11-8-${NV_LIBNPP_DEV_VERSION} \ | ||
libnccl-devel-${NV_LIBNCCL_DEV_PACKAGE_VERSION} \ | ||
&& dnf clean all | ||
|
||
ENV LIBRARY_PATH="$CUDA_HOME/lib64/stubs" | ||
|
||
RUN dnf install -y python3.11 git && \ | ||
ln -s /usr/bin/python3.11 /bin/python && \ | ||
python -m ensurepip --upgrade | ||
|
||
RUN mkdir /app | ||
|
||
WORKDIR /tmp | ||
RUN python -m pip install packaging && \ | ||
python -m pip install --upgrade pip && \ | ||
python -m pip install torch && \ | ||
python -m pip install wheel | ||
|
||
# TODO Move to installing wheel once we have proper releases setup instead of cloning the repo | ||
RUN git clone https://github.com/foundation-model-stack/fms-hf-tuning.git && \ | ||
cd fms-hf-tuning && \ | ||
python -m pip install -r requirements.txt && \ | ||
python -m pip install -r flashattn_requirements.txt && \ | ||
python -m pip install -U datasets && \ | ||
python -m pip install /tmp/fms-hf-tuning | ||
|
||
RUN mkdir -p /licenses | ||
COPY LICENSE /licenses/ | ||
|
||
COPY launch_training.py /app | ||
RUN chmod +x /app/launch_training.py | ||
|
||
# Need a better way to address this hack | ||
RUN touch /.aim_profile && \ | ||
chmod -R 777 /.aim_profile && \ | ||
mkdir /.cache && \ | ||
chmod -R 777 /.cache | ||
|
||
# create tuning user and give ownership to dirs | ||
RUN useradd -u $USER_UID tuning -m -g 0 --system && \ | ||
chown -R $USER:0 /app && \ | ||
chmod -R g+rwX /app | ||
|
||
WORKDIR /app | ||
USER ${USER} | ||
|
||
CMD [ "tail", "-f", "/dev/null" ] |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,168 @@ | ||
# Copyright The SFT Trainer Authors | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
"""Script wraps SFT Trainer to run for Train Conductor. | ||
Read SFTTrainer configuration via environment variable `SFT_TRAINER_CONFIG_JSON_PATH` | ||
for the path to the JSON config file with parameters or `SFT_TRAINER_CONFIG_JSON_ENV_VAR` | ||
for the encoded config string to parse. | ||
""" | ||
|
||
# Standard | ||
import base64 | ||
import os | ||
import pickle | ||
import json | ||
import tempfile | ||
import shutil | ||
import glob | ||
|
||
# First Party | ||
import logging | ||
from tuning import sft_trainer | ||
from tuning.config import configs, peft_config | ||
from tuning.utils.merge_model_utils import create_merged_model | ||
|
||
# Third Party | ||
import transformers | ||
|
||
|
||
def txt_to_obj(txt): | ||
base64_bytes = txt.encode("ascii") | ||
message_bytes = base64.b64decode(base64_bytes) | ||
obj = pickle.loads(message_bytes) | ||
return obj | ||
|
||
|
||
def get_highest_checkpoint(dir_path): | ||
checkpoint_dir = "" | ||
for curr_dir in os.listdir(dir_path): | ||
if curr_dir.startswith("checkpoint"): | ||
if checkpoint_dir: | ||
curr_dir_num = int(checkpoint_dir.split("-")[-1]) | ||
new_dir_num = int(curr_dir.split("-")[-1]) | ||
if new_dir_num > curr_dir_num: | ||
checkpoint_dir = curr_dir | ||
else: | ||
checkpoint_dir = curr_dir | ||
|
||
return checkpoint_dir | ||
|
||
|
||
def main(): | ||
LOGLEVEL = os.environ.get("LOG_LEVEL", "WARNING").upper() | ||
logging.basicConfig(level=LOGLEVEL) | ||
|
||
logging.info("Attempting to launch training script") | ||
parser = transformers.HfArgumentParser( | ||
dataclass_types=( | ||
configs.ModelArguments, | ||
configs.DataArguments, | ||
configs.TrainingArguments, | ||
peft_config.LoraConfig, | ||
peft_config.PromptTuningConfig, | ||
) | ||
) | ||
peft_method_parsed = "pt" | ||
json_path = os.getenv("SFT_TRAINER_CONFIG_JSON_PATH") | ||
json_env_var = os.getenv("SFT_TRAINER_CONFIG_JSON_ENV_VAR") | ||
|
||
# accepts either path to JSON file or encoded string config | ||
if json_path: | ||
( | ||
model_args, | ||
data_args, | ||
training_args, | ||
lora_config, | ||
prompt_tuning_config, | ||
) = parser.parse_json_file(json_path, allow_extra_keys=True) | ||
|
||
contents = "" | ||
with open(json_path, "r") as f: | ||
contents = json.load(f) | ||
peft_method_parsed = contents.get("peft_method") | ||
logging.debug(f"Input params parsed: {contents}") | ||
elif json_env_var: | ||
job_config_dict = txt_to_obj(json_env_var) | ||
logging.debug(f"Input params parsed: {job_config_dict}") | ||
|
||
( | ||
model_args, | ||
data_args, | ||
training_args, | ||
lora_config, | ||
prompt_tuning_config, | ||
) = parser.parse_dict(job_config_dict, allow_extra_keys=True) | ||
|
||
peft_method_parsed = job_config_dict.get("peft_method") | ||
else: | ||
raise ValueError( | ||
"Must set environment variable 'SFT_TRAINER_CONFIG_JSON_PATH' or 'SFT_TRAINER_CONFIG_JSON_ENV_VAR'." | ||
) | ||
|
||
tune_config = None | ||
merge_model = False | ||
if peft_method_parsed == "lora": | ||
tune_config = lora_config | ||
merge_model = True | ||
elif peft_method_parsed == "pt": | ||
tune_config = prompt_tuning_config | ||
|
||
logging.debug( | ||
f"Parameters used to launch training: model_args {model_args}, data_args {data_args}, training_args {training_args}, tune_config {tune_config}" | ||
) | ||
|
||
original_output_dir = training_args.output_dir | ||
with tempfile.TemporaryDirectory() as tempdir: | ||
training_args.output_dir = tempdir | ||
sft_trainer.train(model_args, data_args, training_args, tune_config) | ||
|
||
if merge_model: | ||
export_path = os.getenv( | ||
"LORA_MERGE_MODELS_EXPORT_PATH", original_output_dir | ||
) | ||
|
||
# get the highest checkpoint dir (last checkpoint) | ||
lora_checkpoint_dir = get_highest_checkpoint(training_args.output_dir) | ||
full_checkpoint_dir = os.path.join( | ||
training_args.output_dir, lora_checkpoint_dir | ||
) | ||
|
||
logging.info( | ||
f"Merging lora tuned checkpoint {lora_checkpoint_dir} with base model into output path: {export_path}" | ||
) | ||
|
||
create_merged_model( | ||
checkpoint_models=full_checkpoint_dir, | ||
export_path=export_path, | ||
base_model=model_args.model_name_or_path, | ||
save_tokenizer=True, | ||
) | ||
else: | ||
# copy last checkpoint into mounted output dir | ||
pt_checkpoint_dir = get_highest_checkpoint(training_args.output_dir) | ||
logging.info( | ||
f"Copying last checkpoint {pt_checkpoint_dir} into output dir {original_output_dir}" | ||
) | ||
shutil.copytree( | ||
os.path.join(training_args.output_dir, pt_checkpoint_dir), | ||
original_output_dir, | ||
dirs_exist_ok=True, | ||
) | ||
|
||
# copy over any loss logs | ||
for file in glob.glob(f"{training_args.output_dir}/*loss.jsonl"): | ||
shutil.copy(file, original_output_dir) | ||
|
||
|
||
if __name__ == "__main__": | ||
main() |