Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fix lint warning and import error in data_types_and_io tf example #1762

Merged
merged 3 commits into from
Oct 22, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
98 changes: 52 additions & 46 deletions examples/data_types_and_io/data_types_and_io/tensorflow_type.py
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
# Import necessary libraries and modules

from flytekit import task, workflow
from flytekit import ImageSpec, task, workflow
from flytekit.types.directory import TFRecordsDirectory
from flytekit.types.file import TFRecordFile

Expand All @@ -9,48 +9,54 @@
registry="ghcr.io/flyteorg",
)

if custom_image.is_container():
import tensorflow as tf

# TensorFlow Model
@task
def train_model() -> tf.keras.Model:
model = tf.keras.Sequential(
[tf.keras.layers.Dense(128, activation="relu"), tf.keras.layers.Dense(10, activation="softmax")]
)
model.compile(optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"])
return model

@task
def evaluate_model(model: tf.keras.Model, x: tf.Tensor, y: tf.Tensor) -> float:
loss, accuracy = model.evaluate(x, y)
return accuracy

@workflow
def training_workflow(x: tf.Tensor, y: tf.Tensor) -> float:
model = train_model()
return evaluate_model(model=model, x=x, y=y)

# TFRecord Files
@task
def process_tfrecord(file: TFRecordFile) -> int:
count = 0
for record in tf.data.TFRecordDataset(file):
count += 1
return count

@workflow
def tfrecord_workflow(file: TFRecordFile) -> int:
return process_tfrecord(file=file)

# TFRecord Directories
@task
def process_tfrecords_dir(dir: TFRecordsDirectory) -> int:
count = 0
for record in tf.data.TFRecordDataset(dir.path):
count += 1
return count

@workflow
def tfrecords_dir_workflow(dir: TFRecordsDirectory) -> int:
return process_tfrecords_dir(dir=dir)
import tensorflow as tf


# TensorFlow Model
@task
def train_model() -> tf.keras.Model:
model = tf.keras.Sequential(
[tf.keras.layers.Dense(128, activation="relu"), tf.keras.layers.Dense(10, activation="softmax")]
)
model.compile(optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"])
return model


@task
def evaluate_model(model: tf.keras.Model, x: tf.Tensor, y: tf.Tensor) -> float:
loss, accuracy = model.evaluate(x, y)
return accuracy


@workflow
def training_workflow(x: tf.Tensor, y: tf.Tensor) -> float:
model = train_model()
return evaluate_model(model=model, x=x, y=y)


# TFRecord Files
@task
def process_tfrecord(file: TFRecordFile) -> int:
count = 0
for record in tf.data.TFRecordDataset(file):
count += 1
return count


@workflow
def tfrecord_workflow(file: TFRecordFile) -> int:
return process_tfrecord(file=file)


# TFRecord Directories
@task
def process_tfrecords_dir(dir: TFRecordsDirectory) -> int:
count = 0
for record in tf.data.TFRecordDataset(dir.path):
count += 1
return count


@workflow
def tfrecords_dir_workflow(dir: TFRecordsDirectory) -> int:
return process_tfrecords_dir(dir=dir)
1 change: 1 addition & 0 deletions examples/data_types_and_io/requirements.in
Original file line number Diff line number Diff line change
@@ -1,4 +1,5 @@
pandas
torch
tabulate
tensorflow
pyarrow
1 change: 0 additions & 1 deletion examples/kfmpi_plugin/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -88,4 +88,3 @@ If your MPI workflow hangs or times out, it may be caused by an incorrect workfl

1. Verify Registration Method:
When using a custom image, refer to the Flyte documentation on [Registering workflows](https://docs.flyte.org/en/latest/user_guide/flyte_fundamentals/registering_workflows.html#registration-patterns) to ensure you're following the correct registration method.

Loading