Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Added support for HDF5 dataset and an HDF5 creation tool #1468

Open
wants to merge 4 commits into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
5 changes: 4 additions & 1 deletion .gitignore
Original file line number Diff line number Diff line change
Expand Up @@ -20,4 +20,7 @@ __pycache__/
.coverage
.coverage.*
coverage.xml
*.cover
*.cover

# IDE
.idea
115 changes: 115 additions & 0 deletions keras_retinanet/bin/build_hdf5.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,115 @@
import argparse

import h5py
import numpy as np
from progressbar import progressbar

from ..preprocessing.csv_generator import CSVGenerator
from ..models import backbone


def parse():
parser = argparse.ArgumentParser(description='Simple script for building an HDF5 file for retinanet training.')

parser.add_argument('--train-annotations',
help='Path to CSV file containing annotations for training.',
required=True)
parser.add_argument('--val-annotations',
help='Path to CSV file containing annotations for validation (optional).')
parser.add_argument('--classes',
help='Path to a CSV file containing class label mapping.',
required=True)
parser.add_argument('--dest-file',
help='Path to destination HDF5 file.',
required=True)

parser.add_argument('--backbone-to-use',
help='Backbone that will be used in training.',
default='resnet50',
type=str)
parser.add_argument('--image-min-side',
help='Rescale the image so the smallest side is min_side.',
type=int,
default=800)
parser.add_argument('--image-max-side',
help='Rescale the image if the largest side is larger than max_side.',
type=int,
default=1333)
parser.add_argument('--no-resize',
help='Don\'t rescale the image.',
action='store_true')

args = parser.parse_args()

return args


def main():
args = parse()
annotations_csv = {
'train': args.train_annotations,
'val': args.val_annotations,
}
classes_csv = args.classes
dataset_file = args.dest_file

common_args = {
'batch_size' : 1,
'image_min_side' : args.image_min_side,
'image_max_side' : args.image_max_side,
'no_resize' : args.no_resize,
'preprocess_image' : backbone(args.backbone_to_use).preprocess_image,
}

transform_generator = None
visual_effect_generator = None

for split in ['train', 'val']:
if not annotations_csv[split]:
continue

generator = CSVGenerator(
annotations_csv[split],
classes_csv,
transform_generator=transform_generator,
visual_effect_generator=visual_effect_generator,
**common_args
)

# Computing the data that will be stored
# H5py does not allow variable length arrays of more than 1 dimension
# so we save the shapes to be able to reconstruct them.
# Also preprocessed images are saved so they don't have to be preprocessed avery time they are used in training.
all_images_group = []
labels_group = []
bboxes_group = []
shapes_group = []

for i in progressbar(range(generator.size()), prefix=f'{split}: '):
group = [i]
image_group = generator.load_image_group(group)
annotations_group = generator.load_annotations_group(group)

image_group, annotations_group = generator.filter_annotations(image_group, annotations_group, group)
image_group, annotations_group = generator.preprocess_group(image_group, annotations_group)

shapes_group += [image_group[0].shape]
all_images_group += [image_group[0].reshape(-1)]
labels_group += [annotations_group[0]['labels']]
bboxes_group += [annotations_group[0]['bboxes'].reshape(-1)]

save_classes = [k for k in generator.classes]

# Creating and filling the hdf5 file. We use special dtypes because we have variable lengths in our variables
dt = h5py.special_dtype(vlen=np.dtype('float64'))
st = h5py.special_dtype(vlen=str)
print(f'Saving {split}...')
with h5py.File(dataset_file, 'a') as hf:
hf.create_dataset(f'{split}/img', data=all_images_group, compression='gzip', compression_opts=9, dtype=dt)
hf.create_dataset(f'{split}/shapes', data=shapes_group, compression='gzip', compression_opts=9)
hf.create_dataset(f'{split}/labels', data=labels_group, compression='gzip', compression_opts=9, dtype=dt)
hf.create_dataset(f'{split}/bboxes', data=bboxes_group, compression='gzip', compression_opts=9, dtype=dt)
if split == 'train':
hf.create_dataset('classes', data=np.string_(save_classes), compression='gzip', compression_opts=9, dtype=st)
print(f'[OK] {split}')

21 changes: 21 additions & 0 deletions keras_retinanet/bin/train.py
Original file line number Diff line number Diff line change
Expand Up @@ -39,6 +39,7 @@
from ..callbacks.eval import Evaluate
from ..models.retinanet import retinanet_bbox
from ..preprocessing.csv_generator import CSVGenerator
from ..preprocessing.hdf5_generator import HDF5Generator
from ..preprocessing.kitti import KittiGenerator
from ..preprocessing.open_images import OpenImagesGenerator
from ..preprocessing.pascal_voc import PascalVocGenerator
Expand Down Expand Up @@ -352,6 +353,23 @@ def create_generators(args, preprocess_image):
shuffle_groups=False,
**common_args
)

elif args.dataset_type == 'hdf5':
train_generator = HDF5Generator(
args.dataset_file,
'train',
transform_generator=transform_generator,
visual_effect_generator=visual_effect_generator,
**common_args,
)
try:
validation_generator = HDF5Generator(
args.dataset_file,
'val',
**common_args)
except KeyError:
validation_generator = None

else:
raise ValueError('Invalid data type received: {}'.format(args.dataset_type))

Expand Down Expand Up @@ -421,6 +439,9 @@ def csv_list(string):
csv_parser.add_argument('classes', help='Path to a CSV file containing class label mapping.')
csv_parser.add_argument('--val-annotations', help='Path to CSV file containing annotations for validation (optional).')

hdf5_parser = subparsers.add_parser('hdf5')
hdf5_parser.add_argument('dataset_file', help='Path to HDF5 file containing dataset for training.')

group = parser.add_mutually_exclusive_group()
group.add_argument('--snapshot', help='Resume training from a snapshot.')
group.add_argument('--imagenet-weights', help='Initialize the model with pretrained imagenet weights. This is the default behaviour.', action='store_const', const=True, default=True)
Expand Down
104 changes: 104 additions & 0 deletions keras_retinanet/preprocessing/hdf5_generator.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,104 @@
from collections import OrderedDict

import h5py

from .generator import Generator


class HDF5Generator(Generator):

def __init__(
self,
hdf5_file,
partition,
**kwargs
):
with h5py.File(hdf5_file, 'r') as hf:
self.images = list(hf[partition]['img'])
shapes = list(hf[partition]['shapes'])
self.labels = list(hf[partition]['labels'])
self.bboxes = list(hf[partition]['bboxes'])
self.classes = list(hf['classes'])

# hdf5 only allows storage of unidimensional arrays if they have different lengths
self.images = [img.reshape(shapes[i]) for i, img in enumerate(self.images)]
self.bboxes = [box.reshape(-1, 4) for box in self.bboxes]
self.classes = OrderedDict({key: i for i, key in enumerate(self.classes)})

self.labels_dict = {}
for key, value in self.classes.items():
self.labels_dict[value] = key

super(HDF5Generator, self).__init__(**kwargs)

def size(self):
return len(self.images)

def num_classes(self):
""" Number of classes in the dataset.
"""
return max(self.classes.values()) + 1

def image_aspect_ratio(self, image_index):
""" Compute the aspect ratio for an image with image_index.
"""
return float(self.images[image_index].shape[1]) / float(self.images[image_index].shape[0])

def get_image_group(self, group):
return [self.images[i] for i in group]

def get_annotations_group(self, group):
return [{'labels': self.labels[i],
'bboxes': self.bboxes[i]} for i in group]

def has_label(self, label):
""" Return True if label is a known label.
"""
return label in self.labels_dict

def has_name(self, name):
""" Returns True if name is a known class.
"""
return name in self.classes

def name_to_label(self, name):
""" Map name to label.
"""
return self.classes[name]

def label_to_name(self, label):
""" Map label to name.
"""
return self.labels_dict[label]

def image_path(self, image_index):
return str(image_index)

def load_image(self, image_index):
return self.images[image_index]

def load_annotations(self, image_index):
return {'labels': self.labels[image_index],
'bboxes': self.bboxes[image_index]}

def compute_input_output(self, group):
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

You override this to remove the filtering, right? Does it have a large computational impact? I'd expect it to be minimal, in which case it would be cleaner to not override this function. Do you have a measurement for this?

Copy link
Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Yes, I removed filtering because filtering happens when creating the hdf5. This process relies in the CSVGenerator class which filters the annotations already, so I considered removing that

""" Compute inputs and target outputs for the network.
"""
# load images and annotations
image_group = self.get_image_group(group)
annotations_group = self.get_annotations_group(group)

# randomly apply visual effect
image_group, annotations_group = self.random_visual_effect_group(image_group, annotations_group)

# randomly transform data
image_group, annotations_group = self.random_transform_group(image_group, annotations_group)

# compute network inputs
inputs = self.compute_inputs(image_group)

# compute network targets
targets = self.compute_targets(image_group, annotations_group)

return inputs, targets

1 change: 1 addition & 0 deletions setup.py
Original file line number Diff line number Diff line change
Expand Up @@ -60,6 +60,7 @@ def run(self, *args, **kwargs):
'retinanet-evaluate=keras_retinanet.bin.evaluate:main',
'retinanet-debug=keras_retinanet.bin.debug:main',
'retinanet-convert-model=keras_retinanet.bin.convert_model:main',
'retinanet-build-hdf5=keras_retinanet.bin.build_hdf5:main',
],
},
ext_modules = extensions,
Expand Down