jcat is a self-contained command line tool for viewing jupyter notebook files in terminal. It parses notebook's underlying json content, hence it runs without the dependency of jupyter/ipython core.
Most systems with g++
and make
installed should be fine.
Clone this repo, if you want to be able to easily uninstall jcat use checkinstall
.
sudo apt install checkinstall
cd jcat
sudo checkinstall
Otherwise, you can use make
to install.
cd jcat
make
sudo make install
Optionally, one could use ./jcat
without runing sudo make install
;
or use make install PREFIX=/path/to/install
for alternative installation directory (by default is /usr/local/bin
).
Usage: jcat FILE [OPTION]
FILE: A json parsable notebook file (*.ipynb).
OPTION:
-a: Align prompt (In/Out) for copy.
- Running with
jcat examples/example-cifar10.ipynb
:
=========================================================================
`markdown` # CIFAR - 10
## Decode data
=========================================================================
`markdown` Activate virtual environment
=========================================================================
In [1]: %%bash
source ~/kerai/bin/activate
=========================================================================
`markdown` ### Imports
=========================================================================
In [2]: %matplotlib inline
from helper import get_class_names, get_train_data, get_test_data, plot_images
-------------------------------------------------------------------------
`stderr` Using TensorFlow backend.
=========================================================================
`markdown` Get class names
=========================================================================
In [3]: class_names = get_class_names()
class_names
-------------------------------------------------------------------------
`stdout` Decoding file: data/batches.meta
Out[3]: ['airplane',
'automobile',
'bird',
'cat',
'deer',
'dog',
'frog',
'horse',
'ship',
'truck']
=========================================================================
- Running with
jcat examples/example-cifar10.ipynb -a
:
Output (click to expand)
=========================================================================
# `markdown`
# CIFAR - 10
## Decode data
=========================================================================
# `markdown`
Activate virtual environment
=========================================================================
# In [1]:
%%bash
source ~/kerai/bin/activate
=========================================================================
# `markdown`
### Imports
=========================================================================
# In [2]:
%matplotlib inline
from helper import get_class_names, get_train_data, get_test_data, plot_images
-------------------------------------------------------------------------
# `stderr`
Using TensorFlow backend.
=========================================================================
# `markdown`
Get class names
=========================================================================
# In [3]:
class_names = get_class_names()
class_names
-------------------------------------------------------------------------
# `stdout`
Decoding file: data/batches.meta
# Out[3]:
['airplane',
'automobile',
'bird',
'cat',
'deer',
'dog',
'frog',
'horse',
'ship',
'truck']
=========================================================================
- output of
cat
:
- output of `jcat':
rm /usr/local/bin/jcat
, if no extra $PREFIX
is supplied during installation.
Distributed uder the Boost Software License.
jcat parse notebook with jsoncons, a header only c++ json library.
Example notebook from: https://github.com/09rohanchopra/cifar10/blob/master/cifar10-basic.ipynb