Skip to content

Source code for the ACL 2018 paper: "A Walk-based model on Entity Graphs for Relation Extraction"

License

Notifications You must be signed in to change notification settings

fenchri/walk-based-re

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

9 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Walk-based Relation Extraction

Source code for the ACL 2018 paper "A Walk-based model on Entity Graphs for Relation Extraction".

Requirements & Environment

pip3 install -r requirements.txt

The original model of the paper was implement in Chainer. This is the same version of the model in PyTorch. Slight differences might occur due to the above change.

Reproducability

Results are reproducible with the a fixed seed. Experimentation showed performance increased significantly when classifying only 1 direction (in comparison with the paper, where both directions are classified). If you want to reproduce the results of the paper you need to use the --direction l2r+r2l argument. Otherwise, we recommend to use --direction r2l or --direction l2r in the input or in the config files.

Data & Pre-processing

Download (using the appropriate license) the ACE 2005 dataset. Clone the LSTM-ER repository in order to pre-process the data.

$ cd data_processing/
$ git clone https://github.com/tticoin/LSTM-ER.git
$ cd LSTM-ER/data/ && mkdir common/ && cd common/
$ wget http://nlp.stanford.edu/software/stanford-corenlp-full-2015-04-20.zip && unzip stanford-corenlp-full-2015-04-20.zip
$ wget http://nlp.stanford.edu/software/stanford-postagger-2015-04-20.zip && unzip stanford-postagger-2015-04-20.zip
$ cd ..

Place the ACE 2005 dataset original data English/ folder into data_processing/LSTM-ER/data/ace2005/ and run,

$ zsh preprocess_ace05.zsh 
$ sh process_ace05.sh

Download the pre-trained word embeddings:

$ mkdir embeds/ && cd embeds
$ wget http://tti-coin.jp/data/wikipedia200.bin
$ python3 ../data_processing/bin2txt.py wikipedia200.bin   # convert to .txt
$ cd ..

Usage

Run the main script for training or testing as follows:

$ cd src/
$ python3 walk_re.py --config ../configs/ace2005_params_l4.yaml --train --gpu 0
$ python3 walk_re.py --config ../configs/ace2005_params_l4.yaml --test --gpu 0

Alternatively one can use the bash script:

$ cd src/bin
$ ./run_ace05.sh   # run multiple models train + testing

A portion of the model parameters can be given directly from the command line as follows:

usage: walk_re.py [-h] --config CONFIG [--train] [--test] --gpu GPU
                  [--walks WALKS] [--att {True,False}] [--example]
                  [--direction {l2r,r2l,l2r+r2l}] [--folder FOLDER]
                  [--embeds EMBEDS] [--train_data TRAIN_DATA]
                  [--test_data TEST_DATA] [--epoch EPOCH] [--early_stop]
                  [--preds PREDS]

optional arguments:
  -h, --help            show this help message and exit
  --config CONFIG       Yaml parameter file
  --train               Training mode - model is saved
  --test                Testing mode - needs a model to load
  --gpu GPU             GPU number, use -1 for CPU
  --walks WALKS         Number of walk iterations
  --att {True,False}    Use attention or not
  --example             Print the sentences and info in the 1st batch, then
                        exit (useful for debugging)
  --direction {l2r,r2l,l2r+r2l}
                        Direction of arguments to classify
  --folder FOLDER       Destination folder to save model, predictions and
                        errors
  --embeds EMBEDS       Pre-trained word embeds file
  --train_data TRAIN_DATA
                        Training data file
  --test_data TEST_DATA
                        Test data dile
  --epoch EPOCH         Stopping epoch
  --early_stop          Use early stopping
  --preds PREDS         Folder name for predictions

For model tuning, download and install the RoBO toolkit, then run:

$ cd src/bin
$ ./tune_ace05.sh

Citation

Please cite the following paper when using this code:

@inproceedings{christopoulou2018walk,  
title={A Walk-based Model on Entity Graphs for Relation Extraction},  
author={Christopoulou, Fenia and Miwa, Makoto and Ananiadou, Sophia},  
booktitle={Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)},  
year={2018},  
publisher={Association for Computational Linguistics},  
pages={81--88},  
}

About

Source code for the ACL 2018 paper: "A Walk-based model on Entity Graphs for Relation Extraction"

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published