Skip to content

CCD: Official PyTorch implementation of the paper "Contextual Debiasing for Visual Recognition with Causal Mechanisms"

Notifications You must be signed in to change notification settings

farewellthree/Causal-Context-Debiasing

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

10 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

CCD

Official PyTorch implementation of the paper "Contextual Debiasing for Visual Recognition with Causal Mechanisms"

A Simple but Effective Baseline for Multi-label Classification

Requirements:

  • PyTorch >= 1.7.0
  • torchvision >= 0.5.0
  • randaugment
  • pycocotools
  • opencv-python
  • pillow

Training

To train a model, run train.py with the desired model architecture and the path to the dataset. For example, to train with full model on MS-COCO with resnet101 backbone:

CUDA_VISIBLE_DEVICES=0,1 python3 -u train.py --batch-size=128 --image-size=448 --lr=1e-4 --backbone=resnet101  --loss=focal --use_intervention=True --use_tde=True --stop_epoch=5

to train with full model on MS-COCO with Swin-B backbone:

CUDA_VISIBLE_DEVICES=0,1 python3 -u train.py --batch-size=32 --image-size=384 --lr=5e-5 --backbone=swim_transformer --loss=halfasl --use_tde=True --use_intervention=True --stop_epoch=2

Citation

If you find our paper or this project helps your research, please kindly consider citing our paper in your publications.

@inproceedings{liu2022contextual,
  title={Contextual Debiasing for Visual Recognition With Causal Mechanisms},
  author={Liu, Ruyang and Liu, Hao and Li, Ge and Hou, Haodi and Yu, TingHao and Yang, Tao},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  pages={12755--12765},
  year={2022}
}

About

CCD: Official PyTorch implementation of the paper "Contextual Debiasing for Visual Recognition with Causal Mechanisms"

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages