Skip to content

A python library for visualizing Artificial Neural Networks (ANN)

License

Notifications You must be signed in to change notification settings

endolith/ann-visualizer

 
 

Repository files navigation

photo photo

ANN Visualizer

PyPI version Build Status Donate

A great visualization python library used to work with Keras. It uses python's graphviz library to create a presentable graph of the neural network you are building.

Version 2.0 is Out!

Version 2.0 of the ann_visualizer is now released! The community demanded a CNN visualizer, so we updated our module. You can check out an example of a CNN visualization below!

Happy visualizing!

Installation

From Github

  1. Download the ann_visualizer folder from the github repository.
  2. Place the ann_visualizer folder in the same directory as your main python script.

From pip

Use the following command:

pip3 install ann_visualizer

Make sure you have graphviz installed. Install it using:

sudo apt-get install graphviz && pip3 install graphviz

Usage

from ann_visualizer.visualize import ann_viz
#Build your model here
ann_viz(model)

Documentation

ann_viz(model, view=True, filename="network.gv", title="MyNeural Network")

  • model - The Keras Sequential model
  • view - If True, it opens the graph preview after executed
  • filename - Where to save the graph. (.gv file format)
  • title - A title for the graph

Example ANN

from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense

network = Sequential()
        #Hidden Layer#1
network.add(Dense(units=6,
                  activation='relu',
                  kernel_initializer='uniform',
                  input_dim=11))

        #Hidden Layer#2
network.add(Dense(units=6,
                  activation='relu',
                  kernel_initializer='uniform'))

        #Exit Layer
network.add(Dense(units=1,
                  activation='sigmoid',
                  kernel_initializer='uniform'))

from ann_visualizer.visualize import ann_viz

ann_viz(network, title="", view=True)

This will output: photo

Example CNN

from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import (Dense, Conv2D, Dropout, MaxPooling2D,
                                     Flatten)
from ann_visualizer.visualize import ann_viz


def build_cnn_model():
    model = Sequential()

    model.add(
        Conv2D(
            32, (3, 3),
            padding="same",
            input_shape=(32, 32, 3),
            activation="relu"))
    model.add(Dropout(0.2))

    model.add(
        Conv2D(
            32, (3, 3),
            padding="same",
            input_shape=(32, 32, 3),
            activation="relu"))
    model.add(MaxPooling2D(pool_size=(2, 2)))
    model.add(Dropout(0.2))

    model.add(
        Conv2D(
            64, (3, 3),
            padding="same",
            input_shape=(32, 32, 3),
            activation="relu"))
    model.add(Dropout(0.2))

    model.add(
        Conv2D(
            64, (3, 3),
            padding="same",
            input_shape=(32, 32, 3),
            activation="relu"))
    model.add(MaxPooling2D(pool_size=(2, 2)))
    model.add(Dropout(0.2))

    model.add(Flatten())
    model.add(Dense(512, activation="relu"))
    model.add(Dropout(0.2))

    model.add(Dense(10, activation="softmax"))

    return model


model = build_cnn_model()
ann_viz(model, title="", view=True)

This will output: photo

Contributions

This library is still unstable. Please report all bug to the issues section. It is currently tested with python3.5 and python3.6, but it should run just fine on any python3.

About

A python library for visualizing Artificial Neural Networks (ANN)

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%