Skip to content

Replication files for "State and Local Government Employment in the COVID-19 Crisis"

Notifications You must be signed in to change notification settings

eloualiche/SL-Employment-Covid19

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

16 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

State and Local Government Employment in the COVID-19 Crisis

This repository contains the replication files for Daniel Green and Erik Loualiche paper in the Journal of Public Economics.


Downloading and reproducing the paper

  • Method 1: Download the data from the data repository

    • First download the dataset from the data repository here
    • Unzip the data folder, and navigate to it.
      • You might have to edit the makefile to change the location of your binaries (stata) or export the path, for example export PATH=$PATH:"/Applications/Stata/StataMP.app/Contents/MacOS
  • Method 2: directly from the repository (make sure your stata binary is in your path)

    git clone [email protected]:eloualiche/SL-Employment-Covid19.git
    cd SL-Employment-Covid19
    make download_data          # download the data from the dataverse 
    make                        # build the datasets and tables for the paper

Code

Building the datasets

  1. assemble_1.R: Read the flat files from the Census of Government and build a Census dataset.
    • Input: ./data/CoGIndFin/IndFinyy[abc].Txt: special 60 files ./data/CoG/ASSGF/yyyyFinEstDAT*: modern finance CoG public microuse files ./data/CoG/QTAX/**: Quarterly Tax Files CoG/census_state_codes.xlsx, fips_state.csv
    • Output: SandL_aggregates.fst: aggregate Census expenditure categories CensusFin_statelocalgov_taxes.fst: filter only taxes revenue categories QTAX_STATE_processed.dta
  2. assemble_2.R: Read the Local Area Unemployment Statistics
    • Input: ./data/LAU/ststdsadata.txt, LAU/ststdnsadata.txt, LAU/lau_all.txt: ?? ./data/LAU/sm.industry.txt, ./data/LAU/sm.state.txt, ./data/LAU/sm.supersector.txt: ??
    • Output: BLS_laborforce_size.dta, lau_aggregates.fst
  3. assemble_3.R: Read the ASPEP employment files
    • Input : CoG/census_state_codes.xlsx, fips_state.csv CoG/ASPEP/yycempst for Census years, CoG/ASPEP/yyempst for other years
    • Output: ASPEP_local_payroll_aggregates_1993_2018.dta
  4. assemble_4.do:
    • Input: fips_state.csv, state_pop.dta, state_daily_covid.csv, CoG/ASSGF/2017_Combined.xlsx, FFIS_COVID_19_State_by_State_Allocations.20.xlsx, NASBO/RainyDayFunds2011-2020.xlsx ./data/CPS/cps_1980_2019.dta, ./data/CPS/cps_post2020.dta: from IPUMS
    • Output: state_agg_cps_long_full.dta, state_occ_cps_long.dta muni_covid_combined_data_cps.dta
  5. assemble_5.R:
    • Input: ./derived/state_agg_cps_long_full.dta ./derived/lau_aggregates.fst, ./derived/BLS_laborforce_size.dta, ./derived/ASPEP_local_payroll_aggregates_1993_2018.dta ./derived/QTAX_STATE_processed.dta, ./derived/CensusFin_localgov_taxes.fst, ./derived/SandL_aggregates.fst
    • Output: reg_data_annual.dta, ./data/gdpdef.csv (this file is in the repo; it can be downloaded using the Fred API)

Generating Tables

  1. create_table_1.R:
    • Input: ./data/fips_state.csv, ./data/NASBO/RainyDayFunds* ./derived/CensusFin_statelocalgov_taxes.fst, ./derived/muni_covid_combined_data_cps.dta
    • Output: Table 1
  2. create_figs_tables.do

Appendix Tables

  1. create_appendix_figs_tables.do:
  2. create_appendix_table_1.R: Breakdown of State and Local Government Employment Declines
    • Input: ./derived/state_occ_cps_long.dta
    • Output: Table A1
  3. create_appendix_table_2.R: Tax revenus by population across states
    • Input: data/fips_state.csv, data/state_pop.dta, ./derived/CensusFin_statelocalgov_taxes.fst
    • Output: Table A2
  4. create_appendix_table_3.R
    • Input: ./derived/state_agg_cps_long_full.dta
    • Output: Table A3
  5. create_appendix_table_8.R
    • Input: ./derived/BLS_laborforce_size.dta, ./derived/lau_aggregates.fst, ./derived/SandL_aggregates.fst
    • Output: Table A8

Data Sources

  • Census of Governments (CoG)
    1. Legacy Special 60 files contain historical data from the CoG: data/CoG/IndFin Download them from the Census at:
    2. Aspep: The Annual Survey of Public Employment and Payroll comes from the U.S. Census Bureau, reporting on state and local government civilian employment statistics.
    3. ASSLGF: Annual Survey of State and Local Government Finances
    4. QTAX: The Quarterly Summary of State and Local Tax Revenue is reported by the U.S. Census Bureau.
  • Census: state population is from the Census and available here:
    • For 2010-2019: https://www2.census.gov/programs-surveys/popest/tables/2010-2019/state/totals/nst-est2019-01.xlsx
    • For 2000-2010: https://www2.census.gov/programs-surveys/popest/datasets/2010/2010-eval-estimates/nst-est2010-01.csv
    • We only report our aggregated table state_pop.dta
  • Current Population Survey: we obtained the panel from the IPUMS Sample; see Flood, King, Rodgers, Ruggles, and Warren (2020)
  • COVID-19 Data: we download data from the COVID tracking project.
    • Download the latest version with wget --no-use-server-timestamps http://covidtracking.com/api/states/daily.csv -O ./data/state_daily_covid.csv
    • Note that our version of the data was last updated on Oct. 2nd 2020 and that the covid tracking has been revising some of the past data. This does not affect our estimates.
  • State CRF Allocations: we received the data from the Federal Funds Information for States

Data folder organization:

.
├── CPS
│   ├── cps_1980_2019.dta
│   └── cps_post2020.dta
├── CoG
│   ├── ASPEP
│   │   ├── 00empst.dat
│   │   ├── 01empst.dat
│   │   ├── 02cempst.dat
│   │   ├── 04empst.dat
│   │   ├── 05empst.dat
│   │   ├── 06empst.dat
│   │   ├── 07cempst.dat
│   │   ├── 08empst.dat
│   │   ├── 09empst.dat
│   │   ├── 10empst.dat
│   │   ├── 11empst.dat
│   │   ├── 12cempst.dat
│   │   ├── 13empst.dat
│   │   ├── 14empst.txt
│   │   ├── 15empst.txt
│   │   ├── 16empst.txt
│   │   ├── 17empst.txt
│   │   ├── 18empst.txt
│   │   ├── 92cempst.dat
│   │   ├── 93empst.dat
│   │   ├── 94empst.dat
│   │   ├── 95empst.dat
│   │   ├── 97cempst.dat
│   │   ├── 98empst.dat
│   │   └── 99empst.dat
│   ├── ASSLGF
│   │   ├── 2012FinEstDAT_10162019modp_pu.txt
│   │   ├── 2013FinEstDAT_10162019modp_pu.txt
│   │   ├── 2014FinEstDAT_10162019modp_pu.txt
│   │   ├── 2015FinEstDAT_10162019modp_pu.txt
│   │   ├── 2016FinEstDAT_10162019modp_pu.txt
│   │   ├── 2017FinEstDAT_02202020modp_pu.txt
│   │   └── 2017_Combined.xlsx
│   ├── IndFin
│   │   ├── IndFin**.Txt
│   ├── QTAX
│   │   ├── QTAX-categories.csv
│   │   ├── QTAX-data.csv
│   │   ├── QTAX-datatypes.csv
│   │   ├── QTAX-geolevels.csv
│   │   └── QTAX-timeperiods.csv
│   └── census_state_codes.xlsx
├── FFIS_COVID_19_State_by_State_Allocations.20.xlsx
├── LAU
│   ├── lau_all.txt
│   ├── lau_government.txt
│   ├── sm.area.txt
│   ├── sm.industry.txt
│   ├── sm.state.txt
│   ├── sm.supersector.txt
│   ├── ststdnsadata.txt
│   └── ststdsadata.txt
├── NASBO
│   ├── RainyDayFunds1986-1994.xlsx
│   ├── RainyDayFunds1995-2008.xlsx
│   ├── RainyDayFunds2009-2021.xlsx
│   └── RainyDayFunds2011-2020.xlsx
├── fips_state.csv
├── fred.api.txt
├── gdpdef.csv
├── state_daily_covid.csv
├── state_pop.dta
└── tables_to_brew
    ├── summary_SL_covid.brew.tex
    ├── summary_occupation.brew.tex
    ├── summary_qtax3.brew.tex
    ├── table_ols_publicemp_full_horizon.brew.tex
    └── ts_cps_national2.brew.tex