Skip to content

Latest commit

 

History

History
43 lines (31 loc) · 1.46 KB

README.md

File metadata and controls

43 lines (31 loc) · 1.46 KB

TTK4900: Hydrogen sulfide detection with behavioural monitoring of salmon juveniles using stereo vision and machine learning

1. Developing dataset of stereo images

  • Without Stereo R-CNN: annotator.py
  • With Stereo R-CNN: stereorcnn_annotator.py

2. Dataset for Stereo R-CNN

  • Training dataset: Stereo_RCNN/data/training_data_stereorcnn
  • Testing dataset: Stereo_RCNN/data/testing_data_stereorcnn

3. Stereo camera calibration

  • stereo_calibration.py

4. Training Stereo R-CNN

  • trainval_net.py
  • With Google Colab: setup_train_Stereo_RCNN.ipynb

5. Evaluation of trained Stereo R-CNN model

  • test_model.py

6. 3D position estimation of detected objects

  • 3D_pos_detections.py

7. Tracking objects with estimation of velocity and acceleration

  • Track a specific video over a number of frames: tracker.py
  • Track many videos: tracker_all_videos.py

8. Developing dataset of distribution positional data

  • sliding_window.py

9. Dataset for hydrogen sulfide classification and estimation

  • Training dataset: h2s_estimation/data/training_data
  • Testing dataset: h2s_estimation/data/testing_data

10. Classification of hydrogen sulfide

  • SVM, decision tree, random forest: classify_h2s_classifiers.py
  • AutoML sk-learn: classify_automl_sklearn.ipynb

11. Estimation of hydrogen sulfide

  • SVM, decision tree, random forest: estimation_h2s_regressors.py
  • AutoML sk-learn: estimation_automl_sklearn.ipynb
  • H2O AutoML: estimation_automl_H2O.ipynb