Skip to content

Commit

Permalink
Add orgs etc and another tool section
Browse files Browse the repository at this point in the history
  • Loading branch information
EJ committed Nov 29, 2023
1 parent 5e7eef6 commit c27e918
Show file tree
Hide file tree
Showing 2 changed files with 33 additions and 14 deletions.
10 changes: 10 additions & 0 deletions .gitignore
Original file line number Diff line number Diff line change
@@ -0,0 +1,10 @@
.DS_Store
Trash
*.pyc
*.bak
*.swp
*~
.*~
tmp*
.#*
\#*
37 changes: 23 additions & 14 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -2,34 +2,38 @@

A curated overview of resources for reducing the environmental footprint of AI development and usage.

Pull requests welcome!


## Tools

### Tools for measuring
### Tools for measuring and quantifying footprint

- CodeCarbon [[Website]](https://codecarbon.io/) [[GitHub]](https://github.com/mlco2/codecarbon) [[Paper]](https://arxiv.org/pdf/1911.08354.pdf)
- AIPowerMeter [[Website]](https://greenai-uppa.github.io/AIPowerMeter/) [[GitHub]](https://github.com/GreenAI-Uppa/AIPowerMeter)
- CarbonAI [[GitHub]](https://github.com/Capgemini-Invent-France/CarbonAI)
- carbontracker [[GitHub]](https://github.com/lfwa/carbontracker) [[Paper]](https://arxiv.org/pdf/2007.03051.pdf)
- Eco2AI [[GitHub]](https://github.com/sb-ai-lab/Eco2AI) [[Paper]](https://arxiv.org/pdf/2208.00406.pdf)
- experiment-impact-tracker [[GitHub]](https://github.com/Breakend/experiment-impact-tracker) [[Paper]](https://arxiv.org/pdf/2002.05651.pdf)
- powermeter [[GitHub]](https://github.com/autoai-incubator/powermeter)
- pyJoules [[GitHub]](https://github.com/powerapi-ng/pyJoules)
- tracarbon [[GitHub]](https://github.com/fvaleye/tracarbon)
- zeus [[Website]](https://ml.energy/zeus) [[GitHub]](https://github.com/ml-energy/zeus) [[Paper]](https://www.usenix.org/system/files/nsdi23-you.pdf)
- AIPowerMeter [[Website]](https://greenai-uppa.github.io/AIPowerMeter/) [[Source code]](https://github.com/GreenAI-Uppa/AIPowerMeter)
- CarbonAI [[Source code]](https://github.com/Capgemini-Invent-France/CarbonAI)
- carbontracker [[Source code]](https://github.com/lfwa/carbontracker) [[Paper]](https://arxiv.org/pdf/2007.03051.pdf)
- CodeCarbon [[Website]](https://codecarbon.io/) [[Source code]](https://github.com/mlco2/codecarbon) [[Paper]](https://arxiv.org/pdf/1911.08354.pdf)
- Eco2AI [[Source code]](https://github.com/sb-ai-lab/Eco2AI) [[Paper]](https://arxiv.org/pdf/2208.00406.pdf)
- experiment-impact-tracker [[Source code]](https://github.com/Breakend/experiment-impact-tracker) [[Paper]](https://arxiv.org/pdf/2002.05651.pdf)
- powermeter [[Source code]](https://github.com/autoai-incubator/powermeter)
- pyJoules [[Source code]](https://github.com/powerapi-ng/pyJoules)
- tracarbon [[Source code]](https://github.com/fvaleye/tracarbon)
- zeus [[Website]](https://ml.energy/zeus) [[Source code]](https://github.com/ml-energy/zeus) [[Paper]](https://www.usenix.org/system/files/nsdi23-you.pdf)

### Tools for calculation/estimation
### Tools for calculation/estimation of footprint

The following tools are designed to calculate the footprint based on information about the choice of algorithms, configuration and hardware.

- Green Algorithms [[Website]](http://calculator.green-algorithms.org/) [[Paper]](https://onlinelibrary.wiley.com/doi/epdf/10.1002/advs.202100707)
- ML CO2 Impact [[Website]](https://mlco2.github.io/impact/) [[Paper]](https://arxiv.org/pdf/1910.09700.pdf)

### Tools for AI/ML development with integrated carbon footprint reporting

- d2m [[Website]](https://sintef-9012.github.io/d2m/) [[Source code]](https://github.com/SINTEF-9012/d2m) – a machine learning pipeline for ML model development with automatic monitoring and tracking of the carbon footprint
## Papers

Particularly important papers are highlighted.


- **Energy and Policy Considerations for Deep Learning in NLP** (Strubell et al. 2019) [[Paper]](https://arxiv.org/pdf/1906.02243.pdf)
- Quantifying the Carbon Emissions of Machine Learning (Lacoste et al. 2019) [[Paper]](https://arxiv.org/pdf/1910.09700.pdf)
- **Green AI** (Schwartz et al. 2020) [[Paper]](https://cacm.acm.org/magazines/2020/12/248800-green-ai/fulltext) [[Notes]](notes/schwartz2020.md)
Expand Down Expand Up @@ -68,7 +72,7 @@ Particularly important papers are highlighted.

### Green AI and Federated Learning

- Savazzi 2021: A framework for energy and carbon footprint analysis of distributed and federated edge learning (Savazzi et al. 2021) [[Paper]](https://arxiv.org/pdf/2103.10346.pdf) [[Notes]](notes/savazzi2021.md)
- A framework for energy and carbon footprint analysis of distributed and federated edge learning (Savazzi et al. 2021) [[Paper]](https://arxiv.org/pdf/2103.10346.pdf) [[Notes]](notes/savazzi2021.md)
- A first look into the carbon footprint of federated learning (Qiu et al. 2022) [[Paper]](https://arxiv.org/pdf/2102.07627.pdf) [[Notes]](notes/qiu2022.md)

<!-- ### Green AI and Edge Computing -->
Expand All @@ -81,6 +85,11 @@ Particularly important papers are highlighted.
<!-- - Quantization -->
<!-- - My thoughts: Ikke så dyp analyse. Kun en presentasjon, ikke ordentlig artikkel. Snakker bare om pruning ig quantization. -->

## Organizations, projects and foundations

- Green Software Foundation – non-profit foundation promoting software development with sustainability as a core priority [[Website]](https://greensoftware.foundation/)
- ENFIELD: European Lighthouse to Manifest Trustworthy and Green AI – project for creating a European Centre of Excellence with Green AI as one of the pillars [[Website]](https://www.enfield-project.eu/)

## Other resources

- [Awesome Green AI](https://github.com/samuelrince/awesome-green-ai/tree/main) by [samuelrince](https://github.com/samuelrince)

0 comments on commit c27e918

Please sign in to comment.