forked from SamvitJ/Accel
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
59 changed files
with
12,048 additions
and
5 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,19 @@ | ||
# -------------------------------------------------------- | ||
# Deformable Convolutional Networks | ||
# Copyright (c) 2016 by Contributors | ||
# Copyright (c) 2017 Microsoft | ||
# Licensed under The Apache-2.0 License [see LICENSE for details] | ||
# Modified by Zheng Zhang | ||
# -------------------------------------------------------- | ||
|
||
import os.path as osp | ||
import sys | ||
|
||
def add_path(path): | ||
if path not in sys.path: | ||
sys.path.insert(0, path) | ||
|
||
this_dir = osp.dirname(__file__) | ||
|
||
lib_path = osp.join(this_dir, '..', 'lib') | ||
add_path(lib_path) |
Empty file.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,96 @@ | ||
# -------------------------------------------------------- | ||
# Deformable Convolutional Networks | ||
# Copyright (c) 2016 by Contributors | ||
# Copyright (c) 2017 Microsoft | ||
# Licensed under The Apache-2.0 License [see LICENSE for details] | ||
# Modified by Zheng Zhang | ||
# -------------------------------------------------------- | ||
|
||
import yaml | ||
import numpy as np | ||
from easydict import EasyDict as edict | ||
|
||
config = edict() | ||
|
||
config.MXNET_VERSION = '' | ||
config.output_path = '' | ||
config.symbol = '' | ||
config.gpus = '' | ||
config.CLASS_AGNOSTIC = True | ||
config.SCALES = [(360, 600)] # first is scale (the shorter side); second is max size | ||
|
||
# default training | ||
config.default = edict() | ||
config.default.frequent = 1000 | ||
config.default.kvstore = 'device' | ||
|
||
# network related params | ||
config.network = edict() | ||
config.network.pretrained = '../model/pretrained_model/resnet_v1-101' | ||
config.network.pretrained_epoch = 0 | ||
config.network.PIXEL_MEANS = np.array([103.06, 115.90, 123.15]) | ||
config.network.IMAGE_STRIDE = 0 | ||
config.network.FIXED_PARAMS = ['conv1', 'bn_conv1', 'res2', 'bn2', 'gamma', 'beta'] | ||
|
||
# dataset related params | ||
config.dataset = edict() | ||
config.dataset.dataset = 'cityscapes' | ||
config.dataset.image_set = 'leftImg8bit_train' | ||
config.dataset.test_image_set = 'leftImg8bit_val' | ||
config.dataset.root_path = '../data' | ||
config.dataset.dataset_path = '../data/cityscapes' | ||
config.dataset.NUM_CLASSES = 19 | ||
config.dataset.annotation_prefix = 'gtFine' | ||
|
||
config.TRAIN = edict() | ||
config.TRAIN.lr = 0 | ||
config.TRAIN.lr_step = '' | ||
config.TRAIN.warmup = False | ||
config.TRAIN.warmup_lr = 0 | ||
config.TRAIN.warmup_step = 0 | ||
config.TRAIN.momentum = 0.9 | ||
config.TRAIN.wd = 0.0005 | ||
config.TRAIN.begin_epoch = 0 | ||
config.TRAIN.end_epoch = 0 | ||
config.TRAIN.model_prefix = 'deeplab' | ||
|
||
# whether resume training | ||
config.TRAIN.RESUME = False | ||
# whether flip image | ||
config.TRAIN.FLIP = True | ||
# whether shuffle image | ||
config.TRAIN.SHUFFLE = True | ||
# whether use OHEM | ||
config.TRAIN.ENABLE_OHEM = False | ||
# size of images for each device, 2 for rcnn, 1 for rpn and e2e | ||
config.TRAIN.BATCH_IMAGES = 1 | ||
|
||
config.TEST = edict() | ||
# size of images for each device | ||
config.TEST.BATCH_IMAGES = 1 | ||
|
||
# Test Model Epoch | ||
config.TEST.test_epoch = 0 | ||
|
||
def update_config(config_file): | ||
exp_config = None | ||
with open(config_file) as f: | ||
exp_config = edict(yaml.load(f)) | ||
for k, v in exp_config.items(): | ||
if k in config: | ||
if isinstance(v, dict): | ||
if k == 'TRAIN': | ||
if 'BBOX_WEIGHTS' in v: | ||
v['BBOX_WEIGHTS'] = np.array(v['BBOX_WEIGHTS']) | ||
elif k == 'network': | ||
if 'PIXEL_MEANS' in v: | ||
v['PIXEL_MEANS'] = np.array(v['PIXEL_MEANS']) | ||
for vk, vv in v.items(): | ||
config[k][vk] = vv | ||
else: | ||
if k == 'SCALES': | ||
config[k][0] = (tuple(v)) | ||
else: | ||
config[k] = v | ||
else: | ||
raise ValueError("key must exist in config.py") |
Oops, something went wrong.