Skip to content

Sandbox for testing Tensorflow object detection models on AESA data.

Notifications You must be signed in to change notification settings

danellecline/aesa-tensorflow-detection

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

aesa-tensorflow-detection

Code for testing Tensorflow detection API on AESA data

Mosaic images are broken into 500x00 tiles for training/testing.

[ Image link ]

Prerequisites

  • Python version 3.5
  • [Protobuf](https://developers.google.com/protocol-buffers/
  • Packages: python-tk e.g. apt-get install python3.5-tk,
  • Access to the processed mosaic data and annotations that accompany those. Send an email request if interested

Running

Check-out the code

$ git clone https://github.com/danellecline/aesa-tensorflow-detection

Create virtual environment with correct dependencies

$ cd aesa-tensorflow-detection
$ pip3 install virtualenv
$ virtualenv --python=/usr/local/bin/python3.5 venv-aesa-tensorflow-detection
$ source venv-aesa-tensorflow-detection/bin/activate
$ pip3 install -r requirements.txt

Install Tensorflow for Mac OSX

$ export TF_BINARY_URL=https://storage.googleapis.com/tensorflow/mac/cpu/tensorflow-1.4.0-py3-none-any.whl
$ pip3 install --upgrade $TF_BINARY_URL

Install Tensorflow for Ubuntu GPU

Also see https://www.tensorflow.org/install/install_linux

$ export TF_BINARY_URL=https://storage.googleapis.com/tensorflow/linux/gpu/tensorflow_gpu-1.4.0-cp35-cp35m-linux_x86_64.whl 
$ pip3 install --upgrade tensorflow-gpu==1.4.0

Install Tensorflow models and object detection protocols

git clone https://github.com/tensorflow/models.git tensorflow_models
push tensorflow_models/research/  
#  Download protoc version 3.3 (already compiled). 
mkdir protoc_3.3
cd protoc_3.3
wget https://github.com/google/protobuf/releases/download/v3.3.0/protoc-3.3.0-linux-x86_64.zip
chmod 775 protoc-3.3.0-linux-x86_64.zip
unzip protoc-3.3.0-linux-x86_64.zip 
protoc object_detection/protos/*.proto --python_out=.
popd 

Add libraries to PYTHONPATH

The tensorflow_models directories should be appended to PYTHONPATH. This can be done by running the following from tensorflow_models. This is included in the scripts: export_graph.sh, run.sh, and run_inference.sh, but for reference:

pushd tensorflow_models/research/
export PYTHONPATH=$PYTHONPATH:`pwd`:`pwd`/slim
popd

Generate the TFRecord files

Images and bounding box annotations for thos images must be stored in a TensorFlow record. For this data, it is first converted from annotations in csv files to xml files, then ingested with the create_tfrecord.py script.

  1. Export to xml and crop images. This step takes several days for the entire data set Edit conf.py, replacing ANNOTATION_FILE, TILE_PNG_DIR, and TILE_DIR with the locations of the annotation csv file, and directories for the raw and converted tiles.

switching to whatever dive you have, then run

python convert_annotations.py
  1. Split the annotation in a 50/50 split
python split_annotations.py
  1. Convert to a TF record
python create_tfrecord.py \
--collection M56_500x500_by_group \
--data_dir $PWD/data/ \
--output_path $PWD/data/M56_500x500_train_by_group.record \
--label_map_path $PWD/data/aesa_group_map.pbtxt \
--set train

python create_tfrecord.py \
--collection M56_500x500_by_group  \
--data_dir $PWD/data/ \
--output_path $PWD/data/M56_500x500_test_by_group.record \
--label_map_path $PWD/data/aesa_group_map.pbtxt \
--set test
 

Download pretrained models

mkdir -p models/
cd models
curl -o faster_rcnn_resnet101_coco_11_08_2017.tar.gz http://download.tensorflow.org/models/object_detection/faster_rcnn_resnet101_coco_2017_11_08.tar.gz 
curl -o rfcn_resnet101_coco_2018_01_28.tar.gz http://download.tensorflow.org/models/object_detection/rfcn_resnet101_coco_2018_01_28.tar.gz
curl -o ssd_inception_v2_coco_2017_11_17.tar.gz http://download.tensorflow.org/models/object_detection/ssd_inception_v2_coco_2017_11_17.tar.gz
tar -xvf ssd_inception_v2_coco_2017_11_17.tar.gz
tar -xvf rfcn_resnet101_coco_2018_01_28.tar.gz.tar.gz 
tar -xvf faster_rcnn_resnet101_coco_11_08_2017.tar.gz 

Edit the pipeline.config file

Insert the correct paths for the training/test data in the train/test_input_reader and num_examples in the eval_config

Train the model

python tensorflow_models/research/object_detection/train.py \
    --logtostderr \
    --pipeline_config_path=`pwd`/models/faster_rcnn_resnet101_coco960540resolution_smallanchor/pipeline.config \ 
    --train_dir=`pwd`/models/faster_rcnn_resnet101_coco960540resolution_smallanchor/checkpoints \ 
    --eval_dir=`pwd`/models/faster_rcnn_resnet101_coco960540resolution_smallanchor/eval

Test the model (run this during training the model)

python tensorflow_models/research/object_detection/eval.py \
    --logtostderr \
    --pipeline_config_path=`pwd`/models/faster_rcnn_resnet101_coco960540resolution_smallanchor/pipeline.config \ 
    --checkpoint_dir=`pwd`/models/checkpoints/ \
    --eval_dir=PATH_TO_EVAL_DIR

View results on the model with tensorboard in a docker container

# Build container with
docker build -t tensorboard -f Dockerfile.tensorboard .

# Run with
docker run -p 6006:6006 -v `pwd`:/models tensorboard

# and open web browser to http://localhost:6006 to view model output

Annotation totals

TRAIN

  • CNIDARIA 6281
  • OPHIUROIDEA 3845
  • HOLOTHUROIDEA 2776
  • TUNICATA 417
  • PORIFERA 354
  • CRINOIDEA 267
  • POLYCHAETA 149
  • UNKNOWN 167
  • ECHIURA 101
  • ARTHROPODA 51
  • ASTEROIDEA 37 Done. Found 14445 examples in train set

TEST

  • CNIDARIA 6267
  • OPHIUROIDEA 3948
  • HOLOTHUROIDEA 2783
  • TUNICATA 419
  • PORIFERA 362
  • CRINOIDEA 268
  • UNKNOWN 152
  • POLYCHAETA 138
  • ECHIURA 111
  • ARTHROPODA 57
  • ASTEROIDEA 26 Done. Found 14531 examples in test set

Done. Found 16796 examples in test set

Developer Notes

BUG in tensorflow_models/research/object_detection/inference/detection_inference.py line with tf.gfile.Open(inference_graph_path, 'r') as graph_def_file: should be with tf.gfile.Open(inference_graph_path, 'rb') as graph_def_file: for python3.x

To evaluate model time, insert

import csv
import numpy as np
ofile  = open('{0}_gputime.csv'.format(FLAGS.output_tfrecord_path), 'wt')
writer = csv.writer(ofile)
writer.writerow(['GPU Time'])
times = []
t = time.process_time()
elapsed_time = time.process_time() - t
if counter > 0 :
      times.append(elapsed_time)
      m = np.mean(np.array(times))
      print('Elapsed time {0} mean {1}'.format(elapsed_time, m))

m = np.mean(times)
    writer.writerow(['{0}'.format(int(m*1000))])

 t = time.perf_counter()
 elapsed_time = time.perf_counter() - t
 print('Elapsed time {0}'.format(t))
starting at lines 76 of
tensorflow_models/research/object_detection/inference/infer_detections.py

Developer notes

About

Sandbox for testing Tensorflow object detection models on AESA data.

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published