-
Notifications
You must be signed in to change notification settings - Fork 211
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
add an out-of-the-box captioning and visualization demo
- Loading branch information
Showing
6 changed files
with
260 additions
and
600 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,233 @@ | ||
import gradio as gr | ||
import torch | ||
import copy | ||
import time | ||
import requests | ||
import io | ||
import numpy as np | ||
import re | ||
|
||
import ipdb | ||
|
||
from PIL import Image | ||
|
||
from vilt.config import ex | ||
from vilt.modules import ViLTransformerSS | ||
|
||
from vilt.modules.objectives import cost_matrix_cosine, ipot | ||
from vilt.transforms import pixelbert_transform | ||
from vilt.datamodules.datamodule_base import get_pretrained_tokenizer | ||
|
||
|
||
@ex.automain | ||
def main(_config): | ||
_config = copy.deepcopy(_config) | ||
|
||
loss_names = { | ||
"itm": 0, | ||
"mlm": 0.5, | ||
"mpp": 0, | ||
"vqa": 0, | ||
"imgcls": 0, | ||
"nlvr2": 0, | ||
"irtr": 0, | ||
"arc": 0, | ||
} | ||
tokenizer = get_pretrained_tokenizer(_config["tokenizer"]) | ||
|
||
_config.update( | ||
{ | ||
"loss_names": loss_names, | ||
} | ||
) | ||
|
||
model = ViLTransformerSS(_config) | ||
model.setup("test") | ||
model.eval() | ||
|
||
device = "cuda:0" if _config["num_gpus"] > 0 else "cpu" | ||
model.to(device) | ||
|
||
def infer(url, mp_text, hidx): | ||
try: | ||
res = requests.get(url) | ||
image = Image.open(io.BytesIO(res.content)).convert("RGB") | ||
img = pixelbert_transform(size=384)(image) | ||
img = img.unsqueeze(0).to(device) | ||
except: | ||
return False | ||
|
||
batch = {"text": [""], "image": [None]} | ||
tl = len(re.findall("\[MASK\]", mp_text)) | ||
inferred_token = [mp_text] | ||
batch["image"][0] = img | ||
|
||
with torch.no_grad(): | ||
for i in range(tl): | ||
batch["text"] = inferred_token | ||
encoded = tokenizer(inferred_token) | ||
batch["text_ids"] = torch.tensor(encoded["input_ids"]).to(device) | ||
batch["text_labels"] = torch.tensor(encoded["input_ids"]).to(device) | ||
batch["text_masks"] = torch.tensor(encoded["attention_mask"]).to(device) | ||
encoded = encoded["input_ids"][0][1:-1] | ||
infer = model(batch) | ||
mlm_logits = model.mlm_score(infer["text_feats"])[0, 1:-1] | ||
mlm_values, mlm_ids = mlm_logits.softmax(dim=-1).max(dim=-1) | ||
mlm_values[torch.tensor(encoded) != 103] = 0 | ||
select = mlm_values.argmax().item() | ||
encoded[select] = mlm_ids[select].item() | ||
inferred_token = [tokenizer.decode(encoded)] | ||
|
||
selected_token = "" | ||
encoded = tokenizer(inferred_token) | ||
|
||
if hidx > 0 and hidx < len(encoded["input_ids"][0][:-1]): | ||
with torch.no_grad(): | ||
batch["text"] = inferred_token | ||
batch["text_ids"] = torch.tensor(encoded["input_ids"]).to(device) | ||
batch["text_labels"] = torch.tensor(encoded["input_ids"]).to(device) | ||
batch["text_masks"] = torch.tensor(encoded["attention_mask"]).to(device) | ||
infer = model(batch) | ||
txt_emb, img_emb = infer["text_feats"], infer["image_feats"] | ||
txt_mask, img_mask = ( | ||
infer["text_masks"].bool(), | ||
infer["image_masks"].bool(), | ||
) | ||
for i, _len in enumerate(txt_mask.sum(dim=1)): | ||
txt_mask[i, _len - 1] = False | ||
txt_mask[:, 0] = False | ||
img_mask[:, 0] = False | ||
txt_pad, img_pad = ~txt_mask, ~img_mask | ||
|
||
cost = cost_matrix_cosine(txt_emb.float(), img_emb.float()) | ||
joint_pad = txt_pad.unsqueeze(-1) | img_pad.unsqueeze(-2) | ||
cost.masked_fill_(joint_pad, 0) | ||
|
||
txt_len = (txt_pad.size(1) - txt_pad.sum(dim=1, keepdim=False)).to( | ||
dtype=cost.dtype | ||
) | ||
img_len = (img_pad.size(1) - img_pad.sum(dim=1, keepdim=False)).to( | ||
dtype=cost.dtype | ||
) | ||
T = ipot( | ||
cost.detach(), | ||
txt_len, | ||
txt_pad, | ||
img_len, | ||
img_pad, | ||
joint_pad, | ||
0.1, | ||
1000, | ||
1, | ||
) | ||
|
||
plan = T[0] | ||
plan_single = plan * len(txt_emb) | ||
cost_ = plan_single.t() | ||
|
||
cost_ = cost_[hidx][1:].cpu() | ||
|
||
patch_index, (H, W) = infer["patch_index"] | ||
heatmap = torch.zeros(H, W) | ||
for i, pidx in enumerate(patch_index[0]): | ||
h, w = pidx[0].item(), pidx[1].item() | ||
heatmap[h, w] = cost_[i] | ||
|
||
heatmap = (heatmap - heatmap.mean()) / heatmap.std() | ||
heatmap = np.clip(heatmap, 1.0, 3.0) | ||
heatmap = (heatmap - heatmap.min()) / (heatmap.max() - heatmap.min()) | ||
|
||
_w, _h = image.size | ||
overlay = Image.fromarray(np.uint8(heatmap * 255), "L").resize( | ||
(_w, _h), resample=Image.NEAREST | ||
) | ||
image_rgba = image.copy() | ||
image_rgba.putalpha(overlay) | ||
image = image_rgba | ||
|
||
selected_token = tokenizer.convert_ids_to_tokens( | ||
encoded["input_ids"][0][hidx] | ||
) | ||
|
||
return [np.array(image), inferred_token[0], selected_token] | ||
|
||
inputs = [ | ||
gr.inputs.Textbox( | ||
label="A url of an image.", | ||
lines=5, | ||
), | ||
gr.inputs.Textbox(label="A caption with [MASK] tokens to be filled.", lines=5), | ||
gr.inputs.Slider( | ||
minimum=0, | ||
maximum=38, | ||
step=1, | ||
label="A index of token for heatmap visualization (ignored if zero)", | ||
), | ||
] | ||
outputs = [ | ||
gr.outputs.Image(label="Image"), | ||
gr.outputs.Textbox(label="description"), | ||
gr.outputs.Textbox(label="selected token"), | ||
] | ||
|
||
interface = gr.Interface( | ||
fn=infer, | ||
inputs=inputs, | ||
outputs=outputs, | ||
server_name="0.0.0.0", | ||
server_port=8888, | ||
examples=[ | ||
[ | ||
"https://s3.geograph.org.uk/geophotos/06/21/24/6212487_1cca7f3f_1024x1024.jpg", | ||
"a display of flowers growing out and over the [MASK] [MASK] in front of [MASK] on a [MASK] [MASK].", | ||
0, | ||
], | ||
[ | ||
"https://s3.geograph.org.uk/geophotos/06/21/24/6212487_1cca7f3f_1024x1024.jpg", | ||
"a display of flowers growing out and over the retaining wall in front of cottages on a cloudy day.", | ||
4, | ||
], | ||
[ | ||
"https://s3.geograph.org.uk/geophotos/06/21/24/6212487_1cca7f3f_1024x1024.jpg", | ||
"a display of flowers growing out and over the retaining wall in front of cottages on a cloudy day.", | ||
11, | ||
], | ||
[ | ||
"https://s3.geograph.org.uk/geophotos/06/21/24/6212487_1cca7f3f_1024x1024.jpg", | ||
"a display of flowers growing out and over the retaining wall in front of cottages on a cloudy day.", | ||
15, | ||
], | ||
[ | ||
"https://s3.geograph.org.uk/geophotos/06/21/24/6212487_1cca7f3f_1024x1024.jpg", | ||
"a display of flowers growing out and over the retaining wall in front of cottages on a cloudy day.", | ||
18, | ||
], | ||
[ | ||
"https://upload.wikimedia.org/wikipedia/commons/thumb/4/40/Living_Room.jpg/800px-Living_Room.jpg", | ||
"a room with a [MASK], a [MASK], a [MASK], and a [MASK].", | ||
0, | ||
], | ||
[ | ||
"https://upload.wikimedia.org/wikipedia/commons/thumb/4/40/Living_Room.jpg/800px-Living_Room.jpg", | ||
"a room with a rug, a chair, a painting, and a plant.", | ||
5, | ||
], | ||
[ | ||
"https://upload.wikimedia.org/wikipedia/commons/thumb/4/40/Living_Room.jpg/800px-Living_Room.jpg", | ||
"a room with a rug, a chair, a painting, and a plant.", | ||
8, | ||
], | ||
[ | ||
"https://upload.wikimedia.org/wikipedia/commons/thumb/4/40/Living_Room.jpg/800px-Living_Room.jpg", | ||
"a room with a rug, a chair, a painting, and a plant.", | ||
11, | ||
], | ||
[ | ||
"https://upload.wikimedia.org/wikipedia/commons/thumb/4/40/Living_Room.jpg/800px-Living_Room.jpg", | ||
"a room with a rug, a chair, a painting, and a plant.", | ||
15, | ||
], | ||
], | ||
) | ||
|
||
interface.launch(debug=True) |
Oops, something went wrong.