-
Notifications
You must be signed in to change notification settings - Fork 144
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Adding DLEQ proof for Qn, the subgroup of squares in (Z/nZ)*.
- Loading branch information
Showing
3 changed files
with
218 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,133 @@ | ||
// Package qndleq provides zero-knowledge proofs of Discrete-Logarithm Equivalence (DLEQ) on Qn. | ||
// | ||
// This package implements proofs on the group Qn (the subgroup of squares in (Z/nZ)*). | ||
// | ||
// # Notation | ||
// | ||
// Z/nZ is the ring of integers modulo N. | ||
// (Z/nZ)* is the multiplicative group of Z/nZ, a.k.a. the units of Z/nZ, the elements with inverse mod N. | ||
// Qn is the subgroup of squares in (Z/nZ)*. | ||
// | ||
// A number x belongs to Qn if | ||
// | ||
// gcd(x, N) = 1, and | ||
// exists y such that x = y^2 mod N. | ||
// | ||
// # References | ||
// | ||
// [DLEQ Proof] "Wallet databases with observers" by Chaum-Pedersen. | ||
// https://doi.org/10.1007/3-540-48071-4_7 | ||
// | ||
// [Qn] "Practical Threshold Signatures" by Shoup. | ||
// https://www.iacr.org/archive/eurocrypt2000/1807/18070209-new.pdf | ||
package qndleq | ||
|
||
import ( | ||
"crypto/rand" | ||
"io" | ||
"math/big" | ||
|
||
"github.com/cloudflare/circl/internal/sha3" | ||
) | ||
|
||
type Proof struct { | ||
Z, C *big.Int | ||
SecParam uint | ||
} | ||
|
||
// SampleQn returns an element of Qn (the subgroup of squares in (Z/nZ)*). | ||
// SampleQn will return error for any error returned by crypto/rand.Int. | ||
func SampleQn(random io.Reader, N *big.Int) (*big.Int, error) { | ||
one := big.NewInt(1) | ||
gcd := new(big.Int) | ||
x := new(big.Int) | ||
|
||
for { | ||
y, err := rand.Int(random, N) | ||
if err != nil { | ||
return nil, err | ||
} | ||
// x is a square by construction. | ||
x.Mul(y, y).Mod(x, N) | ||
gcd.GCD(nil, nil, x, N) | ||
// now check whether h is coprime to N. | ||
if gcd.Cmp(one) == 0 { | ||
return x, nil | ||
} | ||
} | ||
} | ||
|
||
// Prove creates a DLEQ Proof that attests that the pairs (g,gx) | ||
// and (h,hx) have the same discrete logarithm equal to x. | ||
// | ||
// Given g, h in Qn (the subgroup of squares in (Z/nZ)*), it holds | ||
// | ||
// gx = g^x mod N | ||
// hx = h^x mod N | ||
// x = Log_g(g^x) = Log_h(h^x) | ||
// | ||
// Note: this function does not run in constant time because it uses | ||
// big.Int arithmetic. | ||
func Prove(random io.Reader, x, g, gx, h, hx, N *big.Int, secParam uint) (*Proof, error) { | ||
rSizeBits := uint(N.BitLen()) + 2*secParam | ||
rSizeBytes := (rSizeBits + 7) / 8 | ||
|
||
rBytes := make([]byte, rSizeBytes) | ||
_, err := io.ReadFull(random, rBytes) | ||
if err != nil { | ||
return nil, err | ||
} | ||
r := new(big.Int).SetBytes(rBytes) | ||
|
||
gP := new(big.Int).Exp(g, r, N) | ||
hP := new(big.Int).Exp(h, r, N) | ||
|
||
c := doChallenge(g, gx, h, hx, gP, hP, N, secParam) | ||
z := new(big.Int) | ||
z.Mul(c, x).Add(z, r) | ||
|
||
return &Proof{Z: z, C: c, SecParam: secParam}, nil | ||
} | ||
|
||
// Verify checks whether x = Log_g(g^x) = Log_h(h^x). | ||
func (p Proof) Verify(g, gx, h, hx, N *big.Int) bool { | ||
gPNum := new(big.Int).Exp(g, p.Z, N) | ||
gPDen := new(big.Int).Exp(gx, p.C, N) | ||
ok := gPDen.ModInverse(gPDen, N) | ||
if ok == nil { | ||
return false | ||
} | ||
gP := gPNum.Mul(gPNum, gPDen) | ||
gP.Mod(gP, N) | ||
|
||
hPNum := new(big.Int).Exp(h, p.Z, N) | ||
hPDen := new(big.Int).Exp(hx, p.C, N) | ||
ok = hPDen.ModInverse(hPDen, N) | ||
if ok == nil { | ||
return false | ||
} | ||
hP := hPNum.Mul(hPNum, hPDen) | ||
hP.Mod(hP, N) | ||
|
||
c := doChallenge(g, gx, h, hx, gP, hP, N, p.SecParam) | ||
|
||
return p.C.Cmp(c) == 0 | ||
} | ||
|
||
func doChallenge(g, gx, h, hx, gP, hP, N *big.Int, secParam uint) *big.Int { | ||
modulusLenBytes := (N.BitLen() + 7) / 8 | ||
nBytes := make([]byte, modulusLenBytes) | ||
cByteLen := (secParam + 7) / 8 | ||
cBytes := make([]byte, cByteLen) | ||
|
||
H := sha3.NewShake256() | ||
_, _ = H.Write(g.FillBytes(nBytes)) | ||
_, _ = H.Write(h.FillBytes(nBytes)) | ||
_, _ = H.Write(gx.FillBytes(nBytes)) | ||
_, _ = H.Write(hx.FillBytes(nBytes)) | ||
_, _ = H.Write(gP.FillBytes(nBytes)) | ||
_, _ = H.Write(hP.FillBytes(nBytes)) | ||
_, _ = H.Read(cBytes) | ||
|
||
return new(big.Int).SetBytes(cBytes) | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,84 @@ | ||
package qndleq_test | ||
|
||
import ( | ||
"crypto/rand" | ||
"math/big" | ||
"testing" | ||
|
||
"github.com/cloudflare/circl/internal/test" | ||
"github.com/cloudflare/circl/zk/qndleq" | ||
) | ||
|
||
func TestProve(t *testing.T) { | ||
const testTimes = 1 << 8 | ||
const SecParam = 128 | ||
one := big.NewInt(1) | ||
max := new(big.Int).Lsh(one, 256) | ||
|
||
for i := 0; i < testTimes; i++ { | ||
N, _ := rand.Int(rand.Reader, max) | ||
if N.Bit(0) == 0 { | ||
N.Add(N, one) | ||
} | ||
x, _ := rand.Int(rand.Reader, N) | ||
g, err := qndleq.SampleQn(rand.Reader, N) | ||
test.CheckNoErr(t, err, "failed to sampleQn") | ||
h, err := qndleq.SampleQn(rand.Reader, N) | ||
test.CheckNoErr(t, err, "failed to sampleQn") | ||
gx := new(big.Int).Exp(g, x, N) | ||
hx := new(big.Int).Exp(h, x, N) | ||
|
||
proof, err := qndleq.Prove(rand.Reader, x, g, gx, h, hx, N, SecParam) | ||
test.CheckNoErr(t, err, "failed to generate proof") | ||
test.CheckOk(proof.Verify(g, gx, h, hx, N), "failed to verify", t) | ||
} | ||
} | ||
|
||
func TestSampleQn(t *testing.T) { | ||
const testTimes = 1 << 7 | ||
one := big.NewInt(1) | ||
max := new(big.Int).Lsh(one, 256) | ||
|
||
for i := 0; i < testTimes; i++ { | ||
N, _ := rand.Int(rand.Reader, max) | ||
if N.Bit(0) == 0 { | ||
N.Add(N, one) | ||
} | ||
a, err := qndleq.SampleQn(rand.Reader, N) | ||
test.CheckNoErr(t, err, "failed to sampleQn") | ||
jac := big.Jacobi(a, N) | ||
test.CheckOk(jac == 1, "Jacoby symbol should be one", t) | ||
gcd := new(big.Int).GCD(nil, nil, a, N) | ||
test.CheckOk(gcd.Cmp(one) == 0, "should be coprime to N", t) | ||
} | ||
} | ||
|
||
func Benchmark_qndleq(b *testing.B) { | ||
const SecParam = 128 | ||
one := big.NewInt(1) | ||
max := new(big.Int).Lsh(one, 256) | ||
|
||
N, _ := rand.Int(rand.Reader, max) | ||
if N.Bit(0) == 0 { | ||
N.Add(N, one) | ||
} | ||
x, _ := rand.Int(rand.Reader, N) | ||
g, _ := qndleq.SampleQn(rand.Reader, N) | ||
h, _ := qndleq.SampleQn(rand.Reader, N) | ||
gx := new(big.Int).Exp(g, x, N) | ||
hx := new(big.Int).Exp(h, x, N) | ||
|
||
proof, _ := qndleq.Prove(rand.Reader, x, g, gx, h, hx, N, SecParam) | ||
|
||
b.Run("Prove", func(b *testing.B) { | ||
for i := 0; i < b.N; i++ { | ||
_, _ = qndleq.Prove(rand.Reader, x, g, gx, h, hx, N, SecParam) | ||
} | ||
}) | ||
|
||
b.Run("Verify", func(b *testing.B) { | ||
for i := 0; i < b.N; i++ { | ||
_ = proof.Verify(g, gx, h, hx, N) | ||
} | ||
}) | ||
} |