Skip to content

cedricvlt/streamlit-condition-tree

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

23 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Based on react-awesome-query-builder

Check out live demo !

This component allows users to build complex condition trees that can be used to filter a dataframe or build a query.

preview

Install

pip install streamlit-condition-tree

Features

  • Highly configurable
  • Fields can be of type:
    • simple (string, number, bool, date/time/datetime, list)
    • structs (will be displayed in selectbox as tree)
  • Comparison operators can be:
    • binary (== != < > ..)
    • unary (is empty, is null)
    • 'between' (for numbers, dates, times)
    • complex operators like 'proximity'
  • RHS can be:
    • values
    • another fields (of same type)
    • functions (arguments also can be values/fields/funcs)
  • LHS can be field or function
  • Reordering (drag-n-drop) support for rules and groups of rules
  • Export to MongoDb, SQL, JsonLogic, SpEL or ElasticSearch

Basic usage

Filter a dataframe

import pandas as pd
from streamlit_condition_tree import condition_tree, config_from_dataframe

# Initial dataframe
df = pd.DataFrame({
    'First Name': ['Georges', 'Alfred'],
    'Age': [45, 98],
    'Favorite Color': ['Green', 'Red'],
    'Like Tomatoes': [True, False]
})

# Basic field configuration from dataframe
config = config_from_dataframe(df)

# Condition tree
query_string = condition_tree(
  config,
  always_show_buttons=True,
  placeholder="Empty condition tree"
)

# Filtered dataframe
df = df.query(query_string)

Build a query

import streamlit as st
from streamlit_condition_tree import condition_tree

# Build a custom configuration
config = {
    'fields': {
        'name': {
            'label': 'Name',
            'type': 'text',
        },
        'age': {
            'label': 'Age',
            'type': 'number',
            'fieldSettings': {
                'min': 0
            },
        },
        'like_tomatoes': {
            'label': 'Likes tomatoes',
            'type': 'boolean',
        }
    }
}

# Condition tree
return_val = condition_tree(
    config,
    return_type='sql'
)

# Generated SQL
st.write(return_val)

API

Parameters

def condition_tree(
    config: dict,
    return_type: str [Optional],
    tree: dict [Optional],
    min_height: int [Optional],
    placeholder: str [Optional],
    always_show_buttons: bool [Optional],
    key: str [Optional]
)
  • config: Python dictionary (mostly used to define the fields) that resembles the JSON counterpart of the React component.

A basic configuration can be built from a DataFrame with config_from_dataframe.
For a more advanced configuration, see the component doc and demo. Custom javascript functions must be wrapped into the JsCode class (see Advanced config)

  • return_type: Format of the returned value :

    • queryString
    • mongodb
    • sql
    • spel
    • elasticSearch
    • jsonLogic

    Default : queryString (can be used to filter a pandas DataFrame using DataFrame.query)

  • tree: Input condition tree (see section below)

    Default : None

  • min_height: Minimum height of the component frame

    Default : 400

  • placeholder: Text displayed when the condition tree is empty

    Default : None

  • always_show_buttons: Show buttons (create rule, etc.) even when they are not hovered

    Default: True

  • key: Fixed identity if you want to change its arguments over time and not have it be re-created.
    Can also be used to access the generated condition tree (see section below).

    Default : None

Export & import a condition tree

When a key is defined for the component, the condition tree generated is accessible through st.session_state[key] as a dictionary.
It can be loaded as an input tree through the tree parameter.