Skip to content

Commit

Permalink
consistently use uint32 in candidate detection (#388)
Browse files Browse the repository at this point in the history
* consistently use uint32 in candidate detection

* adapt tests to uint32 usage

* fixed a missing update to uint32

* improve/add docstrings
  • Loading branch information
alessandrofelder authored Feb 27, 2024
1 parent e0fbbc4 commit 97e28b7
Show file tree
Hide file tree
Showing 5 changed files with 142 additions and 10 deletions.
59 changes: 59 additions & 0 deletions cellfinder/core/detect/detect.py
Original file line number Diff line number Diff line change
Expand Up @@ -86,11 +86,69 @@ def main(
callback: Optional[Callable[[int], None]] = None,
) -> List[Cell]:
"""
Perform cell candidate detection on a 3D signal array.
Parameters
----------
signal_array : numpy.ndarray
3D array representing the signal data.
start_plane : int
Index of the starting plane for detection.
end_plane : int
Index of the ending plane for detection.
voxel_sizes : Tuple[float, float, float]
Tuple of voxel sizes in each dimension (x, y, z).
soma_diameter : float
Diameter of the soma in physical units.
max_cluster_size : float
Maximum size of a cluster in physical units.
ball_xy_size : float
Size of the XY ball used for filtering in physical units.
ball_z_size : float
Size of the Z ball used for filtering in physical units.
ball_overlap_fraction : float
Fraction of overlap allowed between balls.
soma_spread_factor : float
Spread factor for soma size.
n_free_cpus : int
Number of free CPU cores available for parallel processing.
log_sigma_size : float
Size of the sigma for the log filter.
n_sds_above_mean_thresh : float
Number of standard deviations above the mean threshold.
outlier_keep : bool, optional
Whether to keep outliers during detection. Defaults to False.
artifact_keep : bool, optional
Whether to keep artifacts during detection. Defaults to False.
save_planes : bool, optional
Whether to save the planes during detection. Defaults to False.
plane_directory : str, optional
Directory path to save the planes. Defaults to None.
callback : Callable[int], optional
A callback function that is called every time a plane has finished
being processed. Called with the plane number that has finished.
Returns
-------
List[Cell]
List of detected cells.
"""
if not np.issubdtype(signal_array.dtype, np.integer):
raise ValueError(
Expand All @@ -117,6 +175,7 @@ def main(
if end_plane == -1:
end_plane = len(signal_array)
signal_array = signal_array[start_plane:end_plane]
signal_array = signal_array.astype(np.uint32)

callback = callback or (lambda *args, **kwargs: None)

Expand Down
25 changes: 25 additions & 0 deletions cellfinder/core/detect/filters/plane/classical_filter.py
Original file line number Diff line number Diff line change
Expand Up @@ -6,6 +6,31 @@
def enhance_peaks(
img: np.ndarray, clipping_value: float, gaussian_sigma: float = 2.5
) -> np.ndarray:
"""
Enhances the peaks (bright pixels) in an input image.
Parameters:
----------
img : np.ndarray
Input image.
clipping_value : float
Maximum value for the enhanced image.
gaussian_sigma : float, optional
Standard deviation for the Gaussian filter. Default is 2.5.
Returns:
-------
np.ndarray
Enhanced image with peaks.
Notes:
------
The enhancement process includes the following steps:
1. Applying a 2D median filter.
2. Applying a Laplacian of Gaussian filter (LoG).
3. Multiplying by -1 (bright spots respond negative in a LoG).
4. Rescaling image values to range from 0 to clipping value.
"""
type_in = img.dtype
filtered_img = medfilt2d(img.astype(np.float64))
filtered_img = gaussian_filter(filtered_img, gaussian_sigma)
Expand Down
4 changes: 2 additions & 2 deletions cellfinder/core/detect/filters/volume/ball_filter.py
Original file line number Diff line number Diff line change
Expand Up @@ -104,7 +104,7 @@ def __init__(

# Stores the current planes that are being filtered
self.volume = np.empty(
(plane_width, plane_height, ball_z_size), dtype=np.uint16
(plane_width, plane_height, ball_z_size), dtype=np.uint32
)
# Index of the middle plane in the volume
self.middle_z_idx = int(np.floor(ball_z_size / 2))
Expand Down Expand Up @@ -165,7 +165,7 @@ def get_middle_plane(self) -> np.ndarray:
Get the plane in the middle of self.volume.
"""
z = self.middle_z_idx
return np.array(self.volume[:, :, z], dtype=np.uint16)
return np.array(self.volume[:, :, z], dtype=np.uint32)

def walk(self) -> None: # Highly optimised because most time critical
ball_radius = self.ball_xy_size // 2
Expand Down
60 changes: 54 additions & 6 deletions cellfinder/core/detect/filters/volume/structure_splitting.py
Original file line number Diff line number Diff line change
Expand Up @@ -28,7 +28,7 @@ def coords_to_volume(
expanded_shape = [
dim_size + ball_diameter for dim_size in get_shape(xs, ys, zs)
]
volume = np.zeros(expanded_shape, dtype=np.uint16)
volume = np.zeros(expanded_shape, dtype=np.uint32)

x_min, y_min, z_min = xs.min(), ys.min(), zs.min()

Expand All @@ -38,7 +38,7 @@ def coords_to_volume(

# OPTIMISE: vectorize
for rel_x, rel_y, rel_z in zip(relative_xs, relative_ys, relative_zs):
volume[rel_x, rel_y, rel_z] = 65534
volume[rel_x, rel_y, rel_z] = np.iinfo(volume.dtype).max - 1
return volume


Expand All @@ -49,6 +49,26 @@ def ball_filter_imgs(
ball_xy_size: int = 3,
ball_z_size: int = 3,
) -> Tuple[np.ndarray, np.ndarray]:
"""
Apply ball filtering to a 3D volume and detect cell centres.
Uses the `BallFilter` class to perform ball filtering on the volume
and the `CellDetector` class to detect cell centres.
Args:
volume (np.ndarray): The 3D volume to be filtered.
threshold_value (int): The threshold value for ball filtering.
soma_centre_value (int): The value representing the soma centre.
ball_xy_size (int, optional):
The size of the ball filter in the XY plane. Defaults to 3.
ball_z_size (int, optional):
The size of the ball filter in the Z plane. Defaults to 3.
Returns:
Tuple[np.ndarray, np.ndarray]:
A tuple containing the filtered volume and the cell centres.
"""
# OPTIMISE: reuse ball filter instance

good_tiles_mask = np.ones((1, 1, volume.shape[2]), dtype=bool)
Expand All @@ -71,10 +91,10 @@ def ball_filter_imgs(
)

# FIXME: hard coded type
ball_filtered_volume = np.zeros(volume.shape, dtype=np.uint16)
ball_filtered_volume = np.zeros(volume.shape, dtype=np.uint32)
previous_plane = None
for z in range(volume.shape[2]):
bf.append(volume[:, :, z].astype(np.uint16), good_tiles_mask[:, :, z])
bf.append(volume[:, :, z].astype(np.uint32), good_tiles_mask[:, :, z])
if bf.ready:
bf.walk()
middle_plane = bf.get_middle_plane()
Expand All @@ -89,11 +109,24 @@ def ball_filter_imgs(
def iterative_ball_filter(
volume: np.ndarray, n_iter: int = 10
) -> Tuple[List[int], List[np.ndarray]]:
"""
Apply iterative ball filtering to the given volume.
The volume is eroded at each iteration, by subtracting 1 from the volume.
Parameters:
volume (np.ndarray): The input volume.
n_iter (int): The number of iterations to perform. Default is 10.
Returns:
Tuple[List[int], List[np.ndarray]]: A tuple containing two lists:
The structures found in each iteration.
The cell centres found in each iteration.
"""
ns = []
centres = []

threshold_value = 65534
soma_centre_value = 65535
threshold_value = np.iinfo(volume.dtype).max - 1
soma_centre_value = np.iinfo(volume.dtype).max

vol = volume.copy() # TODO: check if required

Expand Down Expand Up @@ -131,6 +164,21 @@ def check_centre_in_cuboid(centre: np.ndarray, max_coords: np.ndarray) -> bool:
def split_cells(
cell_points: np.ndarray, outlier_keep: bool = False
) -> np.ndarray:
"""
Split the given cell points into individual cell centres.
Args:
cell_points (np.ndarray): Array of cell points with shape (N, 3),
where N is the number of cell points and each point is represented
by its x, y, and z coordinates.
outlier_keep (bool, optional): Flag indicating whether to keep outliers
during the splitting process. Defaults to False.
Returns:
np.ndarray: Array of absolute cell centres with shape (M, 3),
where M is the number of individual cells and each centre is
represented by its x, y, and z coordinates.
"""
orig_centre = get_structure_centre(cell_points)

xs = cell_points[:, 0]
Expand Down
4 changes: 2 additions & 2 deletions tests/core/test_integration/test_detection.py
Original file line number Diff line number Diff line change
Expand Up @@ -163,10 +163,10 @@ def test_data_dimension_error(ndim):
# Check for an error when non-3D data input
shape = (2, 3, 4, 5)[:ndim]
signal_array = np.random.randint(
low=0, high=2**16, size=shape, dtype=np.uint16
low=0, high=2**16, size=shape, dtype=np.uint32
)
background_array = np.random.randint(
low=0, high=2**16, size=shape, dtype=np.uint16
low=0, high=2**16, size=shape, dtype=np.uint32
)

with pytest.raises(ValueError, match="Input data must be 3D"):
Expand Down

0 comments on commit 97e28b7

Please sign in to comment.