Skip to content

Commit

Permalink
Update theory manual
Browse files Browse the repository at this point in the history
  • Loading branch information
stfnp committed Aug 22, 2022
1 parent dbe9c64 commit f50ad91
Show file tree
Hide file tree
Showing 4 changed files with 7 additions and 218 deletions.
4 changes: 2 additions & 2 deletions documents/theory-manual/document.tex
Original file line number Diff line number Diff line change
Expand Up @@ -25,9 +25,9 @@
% \allowdisplaybreaks % Break aligned equations over pages

% Parameters
\newcommand{\version}{0.8}
\newcommand{\version}{0.9.0}
\newcommand{\website}{\href{http://www.virtualbow.org/}{\texttt{\textcolor{blue}{http://www.virtualbow.org/}}}}
\newcommand{\copyrights}{Copyright (C) 2016-2021 Stefan Pfeifer}
\newcommand{\copyrights}{Copyright (C) 2016-2022 Stefan Pfeifer}

\begin{document}

Expand Down
215 changes: 2 additions & 213 deletions documents/theory-manual/latex/equations.tex
Original file line number Diff line number Diff line change
Expand Up @@ -738,219 +738,6 @@ \subsection{Floating Frame of Reference}
\end{equation}

where~$\alpha \in\ ]0,\,\nicefrac{1}{50}]$ is a tunable parameter. Tests with the bow simulation suggest that the choice of~$\alpha$ barely has any influence on the results. Therefore the maximum value~$\alpha = \nicefrac{1}{50}$ has been chosen for numerical reasons.

\newpage
\subsection{Stiffness Matrix of a Beam Segment}

In this section the analytical stiffness matrix for a curved beam segment as shown in figure~\ref{fig:beam-linear-1} is derived following the approach presented in \cite{bib:curved-beam-stiffness-matrix}.

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{figures/elements/beam-linear-1}
\caption{Curved beam segment with two nodes}
\label{fig:beam-linear-1}
\end{figure}

The segment has an initial length of~$l$. Its undeformed shape is described by the curve~$x(s)$, $y(s)$, $\varphi(s)$ with~$\varphi$ being the orientation angle measured against the $x$-axis and~$s \in [0,\,l]$ the arc length along the curve.

In order for the segment to be in static equilibrium, the nodal forces~$p_0$,\,\ldots\,$p_5$ have to fulfill the equilibrium conditions
%
\begin{align}
&p_0 + p_3 = 0 \\
&p_1 + p_4 = 0 \\
&p_2 + p_5 + p_0\,\Delta y - p1\,\Delta x = 0
\end{align}

where~$\Delta x = x(l) - x(0)$ and~$\Delta y = y(l) - y(0)$. This can be rearranged into the following matrix equation that relates the forces on nodes A and B to each other,

\begin{equation}
\underbrace{
\begin{bmatrix}
p_3 \\ p_4 \\ p_5
\end{bmatrix}
}_{\boldsymbol{p}_B}
=
\underbrace{
\begin{bmatrix}
-1 & 0 & 0 \\
0 & -1 & 0 \\
-\Delta y & \Delta x & -1
\end{bmatrix}
}_{\boldsymbol{S}_{BA}}
\underbrace{
\begin{bmatrix}
p_0 \\ p_1 \\ p_2
\end{bmatrix}
}_{\boldsymbol{p}_A}
\label{eq:linear-beam-static-relation}
\end{equation}

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{figures/elements/beam-linear-2}
\caption{Cross section forces of the beam segment}
\label{fig:beam-linear-2}
\end{figure}

Forces on the cross section:

\begin{align*}
-&N(s)\cos(\varphi(s)) + Q(s)\sin(\varphi(s)) + p_3 = 0 \\
-&N(s)\sin(\varphi(s)) - Q(s)\cos(\varphi(s)) + p_4 = 0 \\
-&M(s) - p_3\,(y(l)-y(s)) + p_4\,(x(l) - x(s)) + p_5 = 0
\end{align*}

\begin{equation}
\begin{bmatrix}
N \\ M
\end{bmatrix}
=
\underbrace{
\begin{bmatrix}
\cos(\varphi(s)) & \sin(\varphi(s)) & 0 \\
y(s) - y(l) & x(l) - x(s) & 1
\end{bmatrix}
}_{\boldsymbol{H}_B(s)}
\underbrace{
\begin{bmatrix}
p_3 \\ p_4 \\ p_5
\end{bmatrix}
}_{\boldsymbol{p}_B}
\end{equation}


\subsubsection*{Case 1: Flexibility matrix of point B when A is fixed}

\begin{align}
V_B &= \frac{1}{2}\int_{0}^{l}
\begin{bmatrix}
N \\ M
\end{bmatrix}^\mathrm{T}
\begin{bmatrix}
\varepsilon \\ \kappa
\end{bmatrix}
ds \\
&= \frac{1}{2}\int_{0}^{l}
\begin{bmatrix}
N \\ M
\end{bmatrix}^\mathrm{T}
\begin{bmatrix}
C_{\varepsilon\varepsilon} & C_{\varepsilon\kappa}\\
C_{\varepsilon\kappa} & C_{\kappa\kappa}
\end{bmatrix}^{-1}
\begin{bmatrix}
N \\ M
\end{bmatrix}
ds \\
&= \frac{1}{2}\,\boldsymbol{p}_B^\mathrm{T}
\underbrace{
\left(\int_{0}^{l} \boldsymbol{H}_B^\mathrm{T}\,
\boldsymbol{C}^{-1}\boldsymbol{H}_B\,ds\right)
}_{\boldsymbol{K}_{BB}^{-1}}
\boldsymbol{p}_B
\end{align}

According to Castigliano's second theorem the displacement of node B under the external loads~$\boldsymbol{p}_B$ is

\begin{equation}
\boldsymbol{u}_{B} = \frac{\partial V_B}{\partial \boldsymbol{p}_B} = \boldsymbol{K}_{BB}^{-1}\,\boldsymbol{p}_B
\end{equation}

with the flexibility matrix~$\boldsymbol{K}_{BB}^{-1}$ which is the inverse of the stiffness matrix.

\subsubsection*{Case 2: Flexibility matrix of point A when B is fixed}

\begin{equation}
\begin{bmatrix}
N \\ M
\end{bmatrix}
= \boldsymbol{H}_B\,\boldsymbol{p}_B = \boldsymbol{H}_B\,\boldsymbol{S}_{BA}\,\boldsymbol{p}_A
\end{equation}

\begin{align}
V_A &= \frac{1}{2}\,\boldsymbol{p}_A^\mathrm{T}
\left(\int_{0}^{l} \boldsymbol{H}_A^\mathrm{T}\,
\boldsymbol{C}^{-1}\boldsymbol{H}_A\,ds\right)
\boldsymbol{p}_A \\
&= \frac{1}{2}\,\boldsymbol{p}_A^\mathrm{T}
\boldsymbol{S}_{BA}^\mathrm{T}\left(\int_{0}^{l} \boldsymbol{H}_B^\mathrm{T}\,
\boldsymbol{C}^{-1}\boldsymbol{H}_B\,ds\right)\boldsymbol{S}_{BA}\,\boldsymbol{p}_A \\
&= \frac{1}{2}\,\boldsymbol{p}_A^\mathrm{T}
\underbrace{
\left(\boldsymbol{S}_{BA}^\mathrm{T}\boldsymbol{K}_{BB}^{-1}\boldsymbol{S}_{BA}\right)
}_{\boldsymbol{K}_{AA}^{-1}}
\boldsymbol{p}_A
\end{align}

Displacement of node A under the external loads~$\boldsymbol{p}_A$,

\begin{equation}
\boldsymbol{u}_{A} = \frac{\partial V_A}{\partial \boldsymbol{p}_A} = \boldsymbol{K}_{AA}^{-1}\,\boldsymbol{p}_A
\end{equation}

\subsubsection*{Non block-diagonal stiffness}

\begin{equation}
\boldsymbol{p}_B = \boldsymbol{S}_{BA}\,\boldsymbol{p}_A =
\underbrace{
\boldsymbol{S}_{BA}\,\boldsymbol{K}_{AA}
}_{\boldsymbol{K}_{BA}}
\,\boldsymbol{u}_A
\end{equation}

Therefore the complete stiffness relation for the beam segment is

\begin{equation}
\begin{bmatrix}
\boldsymbol{p}_A \\ \boldsymbol{p}_B
\end{bmatrix}
=
\begin{bmatrix}
\boldsymbol{K}_{AA} & \boldsymbol{K}_{BA}^\mathrm{T} \\
\boldsymbol{K}_{BA} & \boldsymbol{K}_{BB}
\end{bmatrix}
\begin{bmatrix}
\boldsymbol{u}_A \\ \boldsymbol{u}_B
\end{bmatrix}
\end{equation}

Note that this is an exact result. No simplifications have been made within the linear Euler-Bernoulli beam theory.





































\newpage
\section{Contact element}
Expand Down Expand Up @@ -1121,3 +908,5 @@ \subsection{Contact Forces}
\end{equation*}

\subsection{Broadphase Algorithm}

\textcolor{red}{TODO}
4 changes: 2 additions & 2 deletions documents/theory-manual/latex/introduction.tex
Original file line number Diff line number Diff line change
Expand Up @@ -5,5 +5,5 @@ \chapter{Introduction}

\website.

This documentation, as opposed to the user manual, is about the theoretical foundations and technical details of the software.
It is meant as a reference for developers and interested users.
This documentation is about the theoretical foundations and technical details of the software.
It is still a work in progress and is meant as a reference for developers and interested users.
2 changes: 1 addition & 1 deletion documents/theory-manual/latex/model.tex
Original file line number Diff line number Diff line change
Expand Up @@ -2,7 +2,7 @@ \chapter{The Bow Model}

A scientific model is a simplification and abstraction of reality, often formulated in a mathematical way.
A good model reduces the complexity of a real system by including only its most significant aspects and disregarding less significant ones.
The results of analyzing this simplified model can then be used to draw conclusions about the real system.
Analyzing this simplified model can then lead to conclusions about the real system that wouldn't have been possible otherwise.

What aspects of reality a model has to reflect depends on the kinds of questions it seeks to answer.
The first step for developing a bow model is therefore to clarify its scope and intended application.
Expand Down

0 comments on commit f50ad91

Please sign in to comment.