-
Notifications
You must be signed in to change notification settings - Fork 780
/
LocalizationExample.cpp
162 lines (131 loc) · 7.42 KB
/
LocalizationExample.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file LocalizationExample.cpp
* @brief Simple robot localization example, with three "GPS-like" measurements
* @author Frank Dellaert
*/
/**
* A simple 2D pose slam example with "GPS" measurements
* - The robot moves forward 2 meter each iteration
* - The robot initially faces along the X axis (horizontal, to the right in 2D)
* - We have full odometry between pose
* - We have "GPS-like" measurements implemented with a custom factor
*/
// We will use Pose2 variables (x, y, theta) to represent the robot positions
#include <gtsam/geometry/Pose2.h>
// We will use simple integer Keys to refer to the robot poses.
#include <gtsam/inference/Key.h>
// As in OdometryExample.cpp, we use a BetweenFactor to model odometry measurements.
#include <gtsam/slam/BetweenFactor.h>
// We add all facors to a Nonlinear Factor Graph, as our factors are nonlinear.
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
// The nonlinear solvers within GTSAM are iterative solvers, meaning they linearize the
// nonlinear functions around an initial linearization point, then solve the linear system
// to update the linearization point. This happens repeatedly until the solver converges
// to a consistent set of variable values. This requires us to specify an initial guess
// for each variable, held in a Values container.
#include <gtsam/nonlinear/Values.h>
// Finally, once all of the factors have been added to our factor graph, we will want to
// solve/optimize to graph to find the best (Maximum A Posteriori) set of variable values.
// GTSAM includes several nonlinear optimizers to perform this step. Here we will use the
// standard Levenberg-Marquardt solver
#include <gtsam/nonlinear/LevenbergMarquardtOptimizer.h>
// Once the optimized values have been calculated, we can also calculate the marginal covariance
// of desired variables
#include <gtsam/nonlinear/Marginals.h>
using namespace std;
using namespace gtsam;
// Before we begin the example, we must create a custom unary factor to implement a
// "GPS-like" functionality. Because standard GPS measurements provide information
// only on the position, and not on the orientation, we cannot use a simple prior to
// properly model this measurement.
//
// The factor will be a unary factor, affect only a single system variable. It will
// also use a standard Gaussian noise model. Hence, we will derive our new factor from
// the NoiseModelFactorN.
#include <gtsam/nonlinear/NonlinearFactor.h>
class UnaryFactor: public NoiseModelFactorN<Pose2> {
// The factor will hold a measurement consisting of an (X,Y) location
// We could this with a Point2 but here we just use two doubles
double mx_, my_;
public:
// Provide access to Matrix& version of evaluateError:
using NoiseModelFactor1<Pose2>::evaluateError;
/// shorthand for a smart pointer to a factor
typedef std::shared_ptr<UnaryFactor> shared_ptr;
// The constructor requires the variable key, the (X, Y) measurement value, and the noise model
UnaryFactor(Key j, double x, double y, const SharedNoiseModel& model):
NoiseModelFactorN<Pose2>(model, j), mx_(x), my_(y) {}
~UnaryFactor() override {}
// Using the NoiseModelFactorN base class there are two functions that must be overridden.
// The first is the 'evaluateError' function. This function implements the desired measurement
// function, returning a vector of errors when evaluated at the provided variable value. It
// must also calculate the Jacobians for this measurement function, if requested.
Vector evaluateError(const Pose2& q, OptionalMatrixType H) const override {
// The measurement function for a GPS-like measurement h(q) which predicts the measurement (m) is h(q) = q, q = [qx qy qtheta]
// The error is then simply calculated as E(q) = h(q) - m:
// error_x = q.x - mx
// error_y = q.y - my
// Node's orientation reflects in the Jacobian, in tangent space this is equal to the right-hand rule rotation matrix
// H = [ cos(q.theta) -sin(q.theta) 0 ]
// [ sin(q.theta) cos(q.theta) 0 ]
const Rot2& R = q.rotation();
if (H) (*H) = (gtsam::Matrix(2, 3) << R.c(), -R.s(), 0.0, R.s(), R.c(), 0.0).finished();
return (Vector(2) << q.x() - mx_, q.y() - my_).finished();
}
// The second is a 'clone' function that allows the factor to be copied. Under most
// circumstances, the following code that employs the default copy constructor should
// work fine.
gtsam::NonlinearFactor::shared_ptr clone() const override {
return std::static_pointer_cast<gtsam::NonlinearFactor>(
gtsam::NonlinearFactor::shared_ptr(new UnaryFactor(*this))); }
// Additionally, we encourage you the use of unit testing your custom factors,
// (as all GTSAM factors are), in which you would need an equals and print, to satisfy the
// GTSAM_CONCEPT_TESTABLE_INST(T) defined in Testable.h, but these are not needed below.
}; // UnaryFactor
int main(int argc, char** argv) {
// 1. Create a factor graph container and add factors to it
NonlinearFactorGraph graph;
// 2a. Add odometry factors
// For simplicity, we will use the same noise model for each odometry factor
auto odometryNoise = noiseModel::Diagonal::Sigmas(Vector3(0.2, 0.2, 0.1));
// Create odometry (Between) factors between consecutive poses
graph.emplace_shared<BetweenFactor<Pose2> >(1, 2, Pose2(2.0, 0.0, 0.0), odometryNoise);
graph.emplace_shared<BetweenFactor<Pose2> >(2, 3, Pose2(2.0, 0.0, 0.0), odometryNoise);
// 2b. Add "GPS-like" measurements
// We will use our custom UnaryFactor for this.
auto unaryNoise =
noiseModel::Diagonal::Sigmas(Vector2(0.1, 0.1)); // 10cm std on x,y
graph.emplace_shared<UnaryFactor>(1, 0.0, 0.0, unaryNoise);
graph.emplace_shared<UnaryFactor>(2, 2.0, 0.0, unaryNoise);
graph.emplace_shared<UnaryFactor>(3, 4.0, 0.0, unaryNoise);
graph.print("\nFactor Graph:\n"); // print
// 3. Create the data structure to hold the initialEstimate estimate to the solution
// For illustrative purposes, these have been deliberately set to incorrect values
Values initialEstimate;
initialEstimate.insert(1, Pose2(0.5, 0.0, 0.2));
initialEstimate.insert(2, Pose2(2.3, 0.1, -0.2));
initialEstimate.insert(3, Pose2(4.1, 0.1, 0.1));
initialEstimate.print("\nInitial Estimate:\n"); // print
// 4. Optimize using Levenberg-Marquardt optimization. The optimizer
// accepts an optional set of configuration parameters, controlling
// things like convergence criteria, the type of linear system solver
// to use, and the amount of information displayed during optimization.
// Here we will use the default set of parameters. See the
// documentation for the full set of parameters.
LevenbergMarquardtOptimizer optimizer(graph, initialEstimate);
Values result = optimizer.optimize();
result.print("Final Result:\n");
// 5. Calculate and print marginal covariances for all variables
Marginals marginals(graph, result);
cout << "x1 covariance:\n" << marginals.marginalCovariance(1) << endl;
cout << "x2 covariance:\n" << marginals.marginalCovariance(2) << endl;
cout << "x3 covariance:\n" << marginals.marginalCovariance(3) << endl;
return 0;
}