🌐 Web • 📝 Demos • 📚 Docs • 📰 Blog
BitBom Minefield uses roaring Bitmaps to graph SBOMs with four main fundamentals:
- Speed: Optimized for rapid data processing.
- Air-Gapped: Operates securely in isolated environments.
- Scalable: Supports millions of nodes effortlessly.
- Customizable: Allows users to extend the project without relying on upstream changes.
An example of Minefield caching 10,000 SBOMs packages transitive dependents in 30 seconds.
Before moving on, please consider giving us a GitHub star ⭐️. Thank you!
- Quickstart Guide
- Example
- To Start Using Minefield
- How Minefield Works
- Visualization of a Query
- Documentation
- Blog
- Star History
- Acknowledgements
View Minefield demo on asciinema
-
Start the server
minefield server
-
Ingest some data:
minefield ingest sbom <sbom_file or sbom_dir>
-
Cache the data:
minefield cache
-
Run a query:
minefield query <query_string>
-
Start the API server:
minefield server
-
Ingest the
testdata/small
SBOM directory:minefield ingest sbom testdata/small
-
Cache the data:
minefield cache
-
Run the leaderboard custom with "dependents library":
- This command generates a ranked list of packages, ordered by the number of other packages that depend on them.
minefield leaderboard custom "dependents library"
-
Run a query on the top value from the leaderboard:
- This command queries the dependents for a specific package, in this case
dep2
.
minefield query custom "dependents library pkg:[email protected]"
- This command queries the dependents for a specific package, in this case
-
Run queries to see the shared dependencies of
lib-A
anddep1
, andlib-A
andlib-B
:- These queries output the intersection of two queries, finding package dependencies shared between each pair.
minefield query custom "dependencies library pkg:[email protected] and dependencies library pkg:[email protected]"
docker pull ghcr.io/bitbomdev/minefield:latest
docker run -it ghcr.io/bitbomdev/minefield:latest
git clone [email protected]:bitbomdev/minefield.git
cd minefield
go build -o minefield main.go
./minefield
The design decisions and architecture of Minefield can be found here.
Minefield is primarily designed as an air-gapped solution, operating seamlessly without internet connectivity. It makes it ideal for secure environments that require complete isolation from external networks.
-
Offline Operation: All functionalities, including data ingestion, caching, querying, and visualization, are performed locally without external dependencies.
-
Enhanced Security: Operating in an air-gapped environment minimizes the risk of data breaches and unauthorized access, ensuring that sensitive information remains within your controlled infrastructure.
-
Data Sovereignty: Users have complete control over their data, with no external transmissions, adhering to strict compliance and regulatory requirements.
-
Efficiency: Minefield is optimized for performance and can handle large datasets quickly even without network resources.
Minefield makes it easy to securely and efficiently manage and explore your software dependencies within isolated environments by offline processing and analyzing SBOMs (Software Bill of Materials).
Stay updated with the latest news and insights by visiting our Blog.