Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

deepspeed stage 3 needs validations disabled thoroughly #1243

Merged
merged 4 commits into from
Dec 24, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 2 additions & 1 deletion helpers/caching/vae.py
Original file line number Diff line number Diff line change
Expand Up @@ -533,7 +533,8 @@ def encode_images(self, images, filepaths, load_from_cache=True):
) * self.vae.config.scaling_factor
else:
latents_uncached = (
latents_uncached.latent * self.vae.config.scaling_factor
getattr(latents_uncached, "latent", latents_uncached)
* self.vae.config.scaling_factor
)
logger.debug(f"Latents shape: {latents_uncached.shape}")

Expand Down
61 changes: 57 additions & 4 deletions helpers/training/deepspeed.py
Original file line number Diff line number Diff line change
@@ -1,9 +1,45 @@
import accelerate, logging, os
import accelerate, logging, os, contextlib, transformers
from accelerate.state import AcceleratorState
from transformers.integrations import HfDeepSpeedConfig

logger = logging.getLogger(__name__)
logger = logging.getLogger("DeepSpeed")
logger.setLevel(os.environ.get("SIMPLETUNER_LOG_LEVEL", "INFO"))

from transformers.integrations.deepspeed import (
is_deepspeed_zero3_enabled,
set_hf_deepspeed_config,
unset_hf_deepspeed_config,
)


@contextlib.contextmanager
def temporarily_disable_deepspeed_zero3():
# https://github.com/huggingface/transformers/issues/28106
deepspeed_plugin = (
AcceleratorState().deepspeed_plugin
if accelerate.state.is_initialized()
else None
)
if deepspeed_plugin is None:
print("DeepSpeed was not enabled.")
return []

if deepspeed_plugin and is_deepspeed_zero3_enabled():
print("DeepSpeed being disabled.")
_hf_deepspeed_config_weak_ref = (
transformers.integrations.deepspeed._hf_deepspeed_config_weak_ref
)
unset_hf_deepspeed_config()
yield
print("DeepSpeed being enabled.")
set_hf_deepspeed_config(HfDeepSpeedConfig(deepspeed_plugin.deepspeed_config))
transformers.integrations.deepspeed._hf_deepspeed_config_weak_ref = (
_hf_deepspeed_config_weak_ref
)
else:
print(f"Doing nothing, deepspeed zero3 was not enabled?")
yield


def deepspeed_zero_init_disabled_context_manager():
"""
Expand All @@ -15,9 +51,16 @@ def deepspeed_zero_init_disabled_context_manager():
else None
)
if deepspeed_plugin is None:
logger.debug("DeepSpeed context manager disabled, no DeepSpeed detected.")
return []

return [deepspeed_plugin.zero3_init_context_manager(enable=False)]
logger.debug(
f"DeepSpeed context manager enabled, DeepSpeed detected: {deepspeed_plugin}"
)
return [
deepspeed_plugin.zero3_init_context_manager(enable=False),
temporarily_disable_deepspeed_zero3(),
]


def prepare_model_for_deepspeed(accelerator, args):
Expand All @@ -38,9 +81,19 @@ def prepare_model_for_deepspeed(accelerator, args):
if offload_param["nvme_path"] == "none":
if args.offload_param_path is None:
raise ValueError(
f"DeepSpeed is using {offload_param['device']} but nvme_path is not specified."
f"DeepSpeed is using {offload_param['device']} but nvme_path is not specified. The configuration has '{offload_param['nvme_path']}' for 'nvme_path'."
)
else:
offload_buffer = 100000000.0
if args.model_family in ["flux"]:
# flux is big
offload_buffer = 131600000.0
logger.info(
f"Attempting to allocate {offload_buffer} size byte buffer."
)
accelerator.state.deepspeed_plugin.deepspeed_config[
"zero_optimization"
]["offload_param"]["buffer_size"] = offload_buffer
accelerator.state.deepspeed_plugin.deepspeed_config[
"zero_optimization"
]["offload_param"]["nvme_path"] = args.offload_param_path
Expand Down
6 changes: 5 additions & 1 deletion helpers/training/text_encoding.py
Original file line number Diff line number Diff line change
Expand Up @@ -261,7 +261,6 @@ def load_tes(
"EleutherAI/pile-t5-base",
torch_dtype=weight_dtype,
).encoder
text_encoder_1.eval()

if tokenizer_2 is not None:
if args.model_family.lower() == "flux":
Expand All @@ -287,4 +286,9 @@ def load_tes(
variant=args.variant,
)

for te in [text_encoder_1, text_encoder_2, text_encoder_3]:
if te is None:
continue
te.eval()

return text_encoder_variant, text_encoder_1, text_encoder_2, text_encoder_3
91 changes: 54 additions & 37 deletions helpers/training/trainer.py
Original file line number Diff line number Diff line change
Expand Up @@ -470,23 +470,24 @@ def init_vae(self, move_to_accelerator: bool = True):
else:
from diffusers import AutoencoderKL as AutoencoderClass

try:
self.vae = AutoencoderClass.from_pretrained(**self.config.vae_kwargs)
except:
logger.warning(
"Couldn't load VAE with default path. Trying without a subfolder.."
)
self.config.vae_kwargs["subfolder"] = None
self.vae = AutoencoderClass.from_pretrained(**self.config.vae_kwargs)
if (
self.vae is not None
and self.config.vae_enable_tiling
and hasattr(self.vae, "enable_tiling")
):
with ContextManagers(deepspeed_zero_init_disabled_context_manager()):
try:
self.vae = AutoencoderClass.from_pretrained(**self.config.vae_kwargs)
except:
logger.warning(
"Enabling VAE tiling for greatly reduced memory consumption due to --vae_enable_tiling which may result in VAE tiling artifacts in encoded latents."
"Couldn't load VAE with default path. Trying without a subfolder.."
)
self.vae.enable_tiling()
self.config.vae_kwargs["subfolder"] = None
self.vae = AutoencoderClass.from_pretrained(**self.config.vae_kwargs)
if (
self.vae is not None
and self.config.vae_enable_tiling
and hasattr(self.vae, "enable_tiling")
):
logger.warning(
"Enabling VAE tiling for greatly reduced memory consumption due to --vae_enable_tiling which may result in VAE tiling artifacts in encoded latents."
)
self.vae.enable_tiling()
if not move_to_accelerator:
logger.debug("Not moving VAE to accelerator.")
return
Expand Down Expand Up @@ -530,28 +531,28 @@ def init_text_encoder(self, move_to_accelerator: bool = True):
None,
None,
)
if self.tokenizer_1 is not None:
self.text_encoder_cls_1 = import_model_class_from_model_name_or_path(
self.config.text_encoder_path,
self.config.revision,
self.config,
subfolder=self.config.text_encoder_subfolder,
)
if self.tokenizer_2 is not None:
self.text_encoder_cls_2 = import_model_class_from_model_name_or_path(
self.config.pretrained_model_name_or_path,
self.config.revision,
self.config,
subfolder="text_encoder_2",
)
if self.tokenizer_3 is not None and self.config.model_family == "sd3":
self.text_encoder_cls_3 = import_model_class_from_model_name_or_path(
self.config.pretrained_model_name_or_path,
self.config.revision,
self.config,
subfolder="text_encoder_3",
)
with ContextManagers(deepspeed_zero_init_disabled_context_manager()):
if self.tokenizer_1 is not None:
self.text_encoder_cls_1 = import_model_class_from_model_name_or_path(
self.config.text_encoder_path,
self.config.revision,
self.config,
subfolder=self.config.text_encoder_subfolder,
)
if self.tokenizer_2 is not None:
self.text_encoder_cls_2 = import_model_class_from_model_name_or_path(
self.config.pretrained_model_name_or_path,
self.config.revision,
self.config,
subfolder="text_encoder_2",
)
if self.tokenizer_3 is not None and self.config.model_family == "sd3":
self.text_encoder_cls_3 = import_model_class_from_model_name_or_path(
self.config.pretrained_model_name_or_path,
self.config.revision,
self.config,
subfolder="text_encoder_3",
)
tokenizers = [self.tokenizer_1, self.tokenizer_2, self.tokenizer_3]
text_encoder_classes = [
self.text_encoder_cls_1,
Expand Down Expand Up @@ -669,7 +670,13 @@ def init_data_backend(self):

raise e

self.init_validation_prompts()
try:
self.init_validation_prompts()
except Exception as e:
logger.error("Could not generate validation prompts.")
logger.error(e)
raise e

# We calculate the number of steps per epoch by dividing the number of images by the effective batch divisor.
# Gradient accumulation steps mean that we only update the model weights every /n/ steps.
collected_data_backend_str = list(StateTracker.get_data_backends().keys())
Expand All @@ -695,6 +702,16 @@ def init_data_backend(self):
self.accelerator.wait_for_everyone()

def init_validation_prompts(self):
if (
hasattr(self.accelerator, "state")
and hasattr(self.accelerator.state, "deepspeed_plugin")
and getattr(self.accelerator.state.deepspeed_plugin, "deepspeed_config", {})
.get("zero_optimization", {})
.get("stage")
== 3
):
logger.error("Cannot run validations with DeepSpeed ZeRO stage 3.")
return
if self.accelerator.is_main_process:
if self.config.model_family == "flux":
(
Expand Down
24 changes: 16 additions & 8 deletions helpers/training/validation.py
Original file line number Diff line number Diff line change
Expand Up @@ -27,6 +27,11 @@
from helpers.image_manipulation.brightness import calculate_luminance
from PIL import Image, ImageDraw, ImageFont
from diffusers import SanaPipeline
from helpers.training.deepspeed import (
deepspeed_zero_init_disabled_context_manager,
prepare_model_for_deepspeed,
)
from transformers.utils import ContextManagers

logger = logging.getLogger(__name__)
logger.setLevel(os.environ.get("SIMPLETUNER_LOG_LEVEL") or "INFO")
Expand Down Expand Up @@ -523,14 +528,17 @@ def init_vae(self):
self.vae = precached_vae
if self.vae is None:
logger.info(f"Initialising {AutoencoderClass}")
self.vae = AutoencoderClass.from_pretrained(
vae_path,
subfolder=(
"vae" if args.pretrained_vae_model_name_or_path is None else None
),
revision=args.revision,
force_upcast=False,
).to(self.inference_device)
with ContextManagers(deepspeed_zero_init_disabled_context_manager()):
self.vae = AutoencoderClass.from_pretrained(
vae_path,
subfolder=(
"vae"
if args.pretrained_vae_model_name_or_path is None
else None
),
revision=args.revision,
force_upcast=False,
).to(self.inference_device)
StateTracker.set_vae(self.vae)

return self.vae
Expand Down
10 changes: 5 additions & 5 deletions poetry.lock

Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.

2 changes: 1 addition & 1 deletion pyproject.toml
Original file line number Diff line number Diff line change
Expand Up @@ -19,7 +19,7 @@ wandb = "^0.19.1"
requests = "^2.32.3"
pillow = "^11.0.0"
opencv-python = "^4.10.0.84"
deepspeed = "^0.16.1"
deepspeed = "^0.16.2"
accelerate = "^1.2.1"
safetensors = "^0.4.5"
compel = "^2.0.1"
Expand Down
2 changes: 1 addition & 1 deletion train.py
Original file line number Diff line number Diff line change
Expand Up @@ -48,7 +48,7 @@
trainer.init_preprocessing_models()
trainer.init_precision(preprocessing_models_only=True)
trainer.init_data_backend()
trainer.init_validation_prompts()
# trainer.init_validation_prompts()
trainer.init_unload_text_encoder()
trainer.init_unload_vae()

Expand Down
Loading