Skip to content

anhnch30820/Train4Ever

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

36 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Set up environment

git clone https://github.com/anhnch30820/Train4Ever.git
pip install -U openmim
mim install mmcv-full
cd Train4Ever
pip install -v -e .

Change permission to train

chmod 777 ./tools/dist_train.sh

Preprocessing and Gen label format COCO

Preprocessing images to PNG

python preprocessing.py --input_path <path_to_input_data> --output_path ./data/TrainImagesPNG

Gen label fomart COCO

python genLabelCocoFormat.py --input_labels_path <path_to_input_label_images> --output_folder_path ./data

Our preprocessed data, generated annotation file and pretrain model CBNetV2 on dataset COCO

To save time you can download our preprocessed data and generated annotation file here

Pretrain model CBNetV2 on dataset COCO here, put file weight pretrain at folder pretrains

After the download is complete you set up folder as picture below and put the corresponding dataset

setup folder

Training

tools/dist_train.sh configs/cbnet/mask_rcnn_cbv2_swin_tiny_patch4_window7_mstrain_780-1100_adamw_3x_coco.py 1

You can change file config here

Inference

checkpoint our model here

python inference.py --input_path <path_to_input_data> --config_path <path_to_input_config> --ckpt_path <path_to_input_ckpt> --output_path <path_to_output>

Our model based on CBNetV2 of UniverseNet

About

No description, website, or topics provided.

Resources

License

Code of conduct

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages