Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

saving files from experiments with the dataset #8

Open
wants to merge 1 commit into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
61 changes: 61 additions & 0 deletions expe_both/kraken.log
Original file line number Diff line number Diff line change
@@ -0,0 +1,61 @@
┏━━━━┳━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━┓
┃ ┃ Name ┃ Type ┃ Params ┃ In sizes ┃ Out sizes ┃
┡━━━━╇━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━┩
│ 0 │ val_cer │ CharErrorRate │ 0 │ ? │ ? │
│ 1 │ net │ MultiParamSequential │ 4.0 M │ [[1, 1, 120, 400], '?'] │ [[1, 121, 1, 50], '?'] │
│ 2 │ net.C_0 │ ActConv2D │ 1.3 K │ [[1, 1, 120, 400], '?'] │ [[1, 32, 120, 400], '?'] │
│ 3 │ net.Do_1 │ Dropout │ 0 │ [[1, 32, 120, 400], '?'] │ [[1, 32, 120, 400], '?'] │
│ 4 │ net.Mp_2 │ MaxPool │ 0 │ [[1, 32, 120, 400], '?'] │ [[1, 32, 60, 200], '?'] │
│ 5 │ net.C_3 │ ActConv2D │ 40.0 K │ [[1, 32, 60, 200], '?'] │ [[1, 32, 60, 200], '?'] │
│ 6 │ net.Do_4 │ Dropout │ 0 │ [[1, 32, 60, 200], '?'] │ [[1, 32, 60, 200], '?'] │
│ 7 │ net.Mp_5 │ MaxPool │ 0 │ [[1, 32, 60, 200], '?'] │ [[1, 32, 30, 100], '?'] │
│ 8 │ net.C_6 │ ActConv2D │ 55.4 K │ [[1, 32, 30, 100], '?'] │ [[1, 64, 30, 100], '?'] │
│ 9 │ net.Do_7 │ Dropout │ 0 │ [[1, 64, 30, 100], '?'] │ [[1, 64, 30, 100], '?'] │
│ 10 │ net.Mp_8 │ MaxPool │ 0 │ [[1, 64, 30, 100], '?'] │ [[1, 64, 15, 50], '?'] │
│ 11 │ net.C_9 │ ActConv2D │ 110 K │ [[1, 64, 15, 50], '?'] │ [[1, 64, 15, 50], '?'] │
│ 12 │ net.Do_10 │ Dropout │ 0 │ [[1, 64, 15, 50], '?'] │ [[1, 64, 15, 50], '?'] │
│ 13 │ net.S_11 │ Reshape │ 0 │ [[1, 64, 15, 50], '?'] │ [[1, 960, 1, 50], '?'] │
│ 14 │ net.L_12 │ TransposedSummarizingRNN │ 1.9 M │ [[1, 960, 1, 50], '?'] │ [[1, 400, 1, 50], '?'] │
│ 15 │ net.Do_13 │ Dropout │ 0 │ [[1, 400, 1, 50], '?'] │ [[1, 400, 1, 50], '?'] │
│ 16 │ net.L_14 │ TransposedSummarizingRNN │ 963 K │ [[1, 400, 1, 50], '?'] │ [[1, 400, 1, 50], '?'] │
│ 17 │ net.Do_15 │ Dropout │ 0 │ [[1, 400, 1, 50], '?'] │ [[1, 400, 1, 50], '?'] │
│ 18 │ net.L_16 │ TransposedSummarizingRNN │ 963 K │ [[1, 400, 1, 50], '?'] │ [[1, 400, 1, 50], '?'] │
│ 19 │ net.Do_17 │ Dropout │ 0 │ [[1, 400, 1, 50], '?'] │ [[1, 400, 1, 50], '?'] │
│ 20 │ net.O_18 │ LinSoftmax │ 48.5 K │ [[1, 400, 1, 50], '?'] │ [[1, 121, 1, 50], '?'] │
└────┴───────────┴──────────────────────────┴────────┴──────────────────────────┴──────────────────────────┘
Trainable params: 4.0 M
Non-trainable params: 0
Total params: 4.0 M
Total estimated model params size (MB): 16
stage 0/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 569/569 0:00:00 0:00:40 val_accuracy: 0.82457 early_stopping: 0/10 0.82457
stage 1/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 569/569 0:00:00 0:00:40 val_accuracy: 0.84399 early_stopping: 0/10 0.84399
stage 2/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 569/569 0:00:00 0:00:40 val_accuracy: 0.84616 early_stopping: 0/10 0.84616
stage 3/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 569/569 0:00:00 0:00:40 val_accuracy: 0.86558 early_stopping: 0/10 0.86558
stage 4/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 569/569 0:00:00 0:00:39 val_accuracy: 0.86369 early_stopping: 1/10 0.86558
stage 5/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 569/569 0:00:00 0:00:40 val_accuracy: 0.89819 early_stopping: 0/10 0.89819
stage 6/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 569/569 0:00:00 0:00:40 val_accuracy: 0.89097 early_stopping: 1/10 0.89819
stage 7/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 569/569 0:00:00 0:00:40 val_accuracy: 0.89955 early_stopping: 0/10 0.89955
stage 8/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 569/569 0:00:00 0:00:39 val_accuracy: 0.90316 early_stopping: 0/10 0.90316
stage 9/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 569/569 0:00:00 0:00:40 val_accuracy: 0.89892 early_stopping: 1/10 0.90316
stage 10/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 569/569 0:00:00 0:00:40 val_accuracy: 0.89205 early_stopping: 2/10 0.90316
stage 11/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 569/569 0:00:00 0:00:41 val_accuracy: 0.88889 early_stopping: 3/10 0.90316
stage 12/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 569/569 0:00:00 0:00:42 val_accuracy: 0.90506 early_stopping: 0/10 0.90506
stage 13/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 569/569 0:00:00 0:00:42 val_accuracy: 0.91364 early_stopping: 0/10 0.91364
stage 14/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 569/569 0:00:00 0:00:42 val_accuracy: 0.90108 early_stopping: 1/10 0.91364
stage 15/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 569/569 0:00:00 0:00:42 val_accuracy: 0.90199 early_stopping: 2/10 0.91364
stage 16/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 569/569 0:00:00 0:00:43 val_accuracy: 0.90867 early_stopping: 3/10 0.91364
stage 17/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 569/569 0:00:00 0:00:42 val_accuracy: 0.91418 early_stopping: 0/10 0.91418
stage 18/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 569/569 0:00:00 0:00:42 val_accuracy: 0.90687 early_stopping: 1/10 0.91418
stage 19/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 569/569 0:00:00 0:00:42 val_accuracy: 0.89494 early_stopping: 2/10 0.91418
stage 20/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 569/569 0:00:00 0:00:43 val_accuracy: 0.92385 early_stopping: 0/10 0.92385
stage 21/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 569/569 0:00:00 0:00:43 val_accuracy: 0.90262 early_stopping: 1/10 0.92385
stage 22/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 569/569 0:00:00 0:00:43 val_accuracy: 0.90750 early_stopping: 2/10 0.92385
stage 23/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 569/569 0:00:00 0:00:42 val_accuracy: 0.91518 early_stopping: 3/10 0.92385
stage 24/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 569/569 0:00:00 0:00:43 val_accuracy: 0.90081 early_stopping: 4/10 0.92385
stage 25/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 569/569 0:00:00 0:00:42 val_accuracy: 0.91048 early_stopping: 5/10 0.92385
stage 26/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 569/569 0:00:00 0:00:42 val_accuracy: 0.91915 early_stopping: 6/10 0.92385
stage 27/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 569/569 0:00:00 0:00:42 val_accuracy: 0.90018 early_stopping: 7/10 0.92385
stage 28/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 569/569 0:00:00 0:00:42 val_accuracy: 0.90696 early_stopping: 8/10 0.92385
stage 29/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 569/569 0:00:00 0:00:42 val_accuracy: 0.89756 early_stopping: 9/10 0.92385
stage 30/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 569/569 0:00:00 0:00:42 val_accuracy: 0.90903 early_stopping: 10/10 0.92385
Moving best model /home/ROCQ/almanach/achague/peraire/peraire-ground-truth/models/peraire2_ft_MMCFR_20.mlmodel (0.9238482713699341) to /home/ROCQ/almanach/achague/peraire/peraire-ground-truth/models/peraire2_ft_MMCFR_best.mlmodel
Loading
Loading