Add rougel for cross-device evaluation #768
Open
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
To assess the performance of our fine-tuned model, we leverage the Rouge-L metric and conduct experiments with a large number of clients, utilizing the Dolly-15K dataset as our training corpus.
The Dolly-15K dataset encompasses a total of 15,015 data points, distributed across eight distinct tasks. For a more comprehensive evaluation, we allocate the final task exclusively for evaluation purposes, while dedicating the remaining ones to the training phase.
Our experimental setup involves a network of 200 clients, utilizing a Dirichlet distribution for data partitioning to emulate non-IID conditions across the client base.
To do the evaluation, run