Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Features/self test onnx #330

Merged
merged 25 commits into from
Oct 31, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
78 changes: 38 additions & 40 deletions configs/config_templates/yolox_itag.py
Original file line number Diff line number Diff line change
Expand Up @@ -49,14 +49,14 @@
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)

train_pipeline = [
dict(type='MMMosaic', img_scale='${img_scale}', pad_val=114.0),
dict(type='MMMosaic', img_scale=tuple(img_scale), pad_val=114.0),
dict(
type='MMRandomAffine',
scaling_ratio_range='${scale_ratio}',
border=['-${img_scale}[0] // 2', '-${img_scale}[1] // 2']),
scaling_ratio_range=scale_ratio,
border=[img_scale[0] // 2, img_scale[1] // 2]),
dict(
type='MMMixUp', # s m x l; tiny nano will detele
img_scale='${img_scale}',
img_scale=tuple(img_scale),
ratio_range=(0.8, 1.6),
pad_val=114.0),
dict(
Expand All @@ -70,45 +70,43 @@
dict(type='MMPad', pad_to_square=True, pad_val=(114.0, 114.0, 114.0)),
dict(
type='MMNormalize',
mean='${img_norm_cfg.mean}',
std='${img_norm_cfg.std}',
to_rgb='${img_norm_cfg.to_rgb}'),
mean=img_norm_cfg['mean'],
std=img_norm_cfg['std'],
to_rgb=img_norm_cfg['to_rgb']),
dict(type='DefaultFormatBundle'),
dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels'])
]
test_pipeline = [
dict(type='MMResize', img_scale='${img_scale}', keep_ratio=True),
dict(type='MMResize', img_scale=img_scale, keep_ratio=True),
dict(type='MMPad', pad_to_square=True, pad_val=(114.0, 114.0, 114.0)),
dict(
type='MMNormalize',
mean='${img_norm_cfg.mean}',
std='${img_norm_cfg.std}',
to_rgb='${img_norm_cfg.to_rgb}'),
mean=img_norm_cfg['mean'],
std=img_norm_cfg['std'],
to_rgb=img_norm_cfg['to_rgb']),
dict(type='DefaultFormatBundle'),
dict(type='Collect', keys=['img'])
]

train_path = 'data/coco/train2017.manifest'
val_path = 'data/coco/val2017.manifest'

train_dataset = dict(
type='DetImagesMixDataset',
data_source=dict(type='DetSourcePAI', path=train_path, classes=CLASSES),
pipeline=train_pipeline,
dynamic_scale=tuple(img_scale))

val_dataset = dict(
type='DetImagesMixDataset',
imgs_per_gpu=2,
data_source=dict(type='DetSourcePAI', path=val_path, classes=CLASSES),
pipeline=test_pipeline,
dynamic_scale=None,
label_padding=False)

data = dict(
imgs_per_gpu=16,
workers_per_gpu=4,
train=dict(
type='DetImagesMixDataset',
data_source=dict(
type='DetSourcePAI',
path='data/coco/train2017.manifest',
classes='${CLASSES}'),
pipeline='${train_pipeline}',
dynamic_scale='${img_scale}'),
val=dict(
type='DetImagesMixDataset',
imgs_per_gpu=2,
data_source=dict(
type='DetSourcePAI',
path='data/coco/val2017.manifest',
classes='${CLASSES}'),
pipeline='${test_pipeline}',
dynamic_scale=None,
label_padding=False))
imgs_per_gpu=16, workers_per_gpu=4, train=train_dataset, val=val_dataset)

# additional hooks
interval = 10
Expand All @@ -120,38 +118,38 @@
priority=48),
dict(
type='SyncRandomSizeHook',
ratio_range='${random_size}',
img_scale='${img_scale}',
interval='${interval}',
ratio_range=random_size,
img_scale=img_scale,
interval=interval,
priority=48),
dict(
type='SyncNormHook',
num_last_epochs=15,
interval='${interval}',
interval=interval,
priority=48)
]

# evaluation
vis_num = 20
score_thr = 0.5
eval_config = dict(
interval='${interval}',
interval=interval,
gpu_collect=False,
visualization_config=dict(
vis_num='${vis_num}',
score_thr='${score_thr}',
vis_num=vis_num,
score_thr=score_thr,
) # show by TensorboardLoggerHookV2
)

eval_pipelines = [
dict(
mode='test',
data='${data.val}',
data=val_dataset,
evaluators=[dict(type='CocoDetectionEvaluator', classes=CLASSES)],
)
]

checkpoint_config = dict(interval='${interval}')
checkpoint_config = dict(interval=interval)
# optimizer
# basic_lr_per_img = 0.01 / 64.0
optimizer = dict(
Expand Down
31 changes: 28 additions & 3 deletions easycv/apis/export.py
Original file line number Diff line number Diff line change
Expand Up @@ -247,10 +247,10 @@ def _export_yolox(model, cfg, filename):

if hasattr(cfg, 'export'):
export_type = getattr(cfg.export, 'export_type', 'raw')
default_export_type_list = ['raw', 'jit', 'blade']
default_export_type_list = ['raw', 'jit', 'blade', 'onnx']
if export_type not in default_export_type_list:
logging.warning(
'YOLOX-PAI only supports the export type as [raw,jit,blade], otherwise we use raw as default'
'YOLOX-PAI only supports the export type as [raw,jit,blade,onnx], otherwise we use raw as default'
)
export_type = 'raw'

Expand All @@ -276,7 +276,7 @@ def _export_yolox(model, cfg, filename):
len(img_scale) == 2
), 'Export YoloX predictor config contains img_scale must be (int, int) tuple!'

input = 255 * torch.rand((batch_size, 3) + img_scale)
input = 255 * torch.rand((batch_size, 3) + tuple(img_scale))

# assert use_trt_efficientnms only happens when static_opt=True
if static_opt is not True:
Expand Down Expand Up @@ -355,6 +355,31 @@ def _export_yolox(model, cfg, filename):

json.dump(config, ofile)

if export_type == 'onnx':

with io.open(
filename + '.config.json' if filename.endswith('onnx')
else filename + '.onnx.config.json', 'w') as ofile:
config = dict(
model=cfg.model,
export=cfg.export,
test_pipeline=cfg.test_pipeline,
classes=cfg.CLASSES)

json.dump(config, ofile)

torch.onnx.export(
model,
input.to(device),
filename if filename.endswith('onnx') else filename +
'.onnx',
export_params=True,
opset_version=12,
do_constant_folding=True,
input_names=['input'],
output_names=['output'],
)

if export_type == 'jit':
with io.open(filename + '.jit', 'wb') as ofile:
torch.jit.save(yolox_trace, ofile)
Expand Down
37 changes: 31 additions & 6 deletions easycv/predictors/detector.py
Original file line number Diff line number Diff line change
Expand Up @@ -23,6 +23,12 @@
from .interface import PredictorInterface


# 将张量转化为ndarray格式
def onnx_to_numpy(tensor):
return tensor.detach().cpu().numpy(
) if tensor.requires_grad else tensor.cpu().numpy()


class DetInputProcessor(InputProcessor):

def build_processor(self):
Expand Down Expand Up @@ -349,9 +355,11 @@ def __init__(self,
self.model_type = 'jit'
elif model_path.endswith('blade'):
self.model_type = 'blade'
elif model_path.endswith('onnx'):
self.model_type = 'onnx'
else:
self.model_type = 'raw'
assert self.model_type in ['raw', 'jit', 'blade']
assert self.model_type in ['raw', 'jit', 'blade', 'onnx']

if self.model_type == 'blade' or self.use_trt_efficientnms:
import torch_blade
Expand Down Expand Up @@ -381,8 +389,16 @@ def __init__(self,

def _build_model(self):
if self.model_type != 'raw':
with io.open(self.model_path, 'rb') as infile:
model = torch.jit.load(infile, self.device)
if self.model_type != 'onnx':
with io.open(self.model_path, 'rb') as infile:
model = torch.jit.load(infile, self.device)
else:
import onnxruntime
if onnxruntime.get_device() == 'GPU':
model = onnxruntime.InferenceSession(
self.model_path, providers=['CUDAExecutionProvider'])
else:
model = onnxruntime.InferenceSession(self.model_path)
else:
from easycv.utils.misc import reparameterize_models
model = super()._build_model()
Expand All @@ -394,8 +410,9 @@ def prepare_model(self):
If the model is not loaded from a configuration file, e.g. torch jit model, you need to reimplement it.
"""
model = self._build_model()
model.to(self.device)
model.eval()
if self.model_type != 'onnx':
model.to(self.device)
model.eval()
if self.model_type == 'raw':
load_checkpoint(model, self.model_path, map_location='cpu')
return model
Expand All @@ -406,7 +423,15 @@ def model_forward(self, inputs):
"""
if self.model_type != 'raw':
with torch.no_grad():
outputs = self.model(inputs['img'])
if self.model_type != 'onnx':
outputs = self.model(inputs['img'])
else:
outputs = self.model.run(
None, {
self.model.get_inputs()[0].name:
onnx_to_numpy(inputs['img'])
})[0]
outputs = torch.from_numpy(outputs)
outputs = {'results': outputs} # convert to dict format
else:
outputs = super().model_forward(inputs)
Expand Down
1 change: 1 addition & 0 deletions requirements/runtime.txt
Original file line number Diff line number Diff line change
Expand Up @@ -13,6 +13,7 @@ lmdb
numba
numpy
nuscenes-devkit
onnxruntime
opencv-python
oss2
packaging
Expand Down
6 changes: 3 additions & 3 deletions tests/test_tools/test_predict.py
Original file line number Diff line number Diff line change
Expand Up @@ -83,12 +83,12 @@ def test_predict_oss_path(self):
oss_config = get_oss_config()
ak_id = oss_config['ak_id']
ak_secret = oss_config['ak_secret']
hosts = oss_config['hosts'] + ['oss-cn-hangzhou.aliyuncs.com']
hosts = oss_config['hosts']
hosts = ','.join(_ for _ in hosts)
buckets = oss_config['buckets'] + ['easycv']
buckets = oss_config['buckets']
buckets = ','.join(_ for _ in buckets)

input_file = 'oss://easycv/data/small_test_data/test_images/http_image_list.txt'
input_file = 'oss://pai-vision-data-hz/unittest/local_backup/easycv_nfs/data/test_images/http_image_list.txt'
output_file = tempfile.NamedTemporaryFile('w').name
cmd = f'PYTHONPATH=. python tools/predict.py \
--input_file {input_file} \
Expand Down
Loading