Skip to content

Commit

Permalink
fix upon comments
Browse files Browse the repository at this point in the history
  • Loading branch information
lostkevin committed Jul 10, 2024
1 parent 4e2f393 commit d05b7e7
Show file tree
Hide file tree
Showing 5 changed files with 19 additions and 362 deletions.
184 changes: 1 addition & 183 deletions configs/classification/imagenet/inception/inceptionv4_b32x8_100e.py
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
_base_ = 'configs/base.py'
_base_ = 'configs/classification/imagenet/inception/inceptionv3_b32x8_100e.py'

num_classes = 1000
# model settings
Expand Down Expand Up @@ -30,186 +30,4 @@
)
])

class_list = [
'0', '1', '2', '3', '4', '5', '6', '7', '8', '9', '10', '11', '12', '13',
'14', '15', '16', '17', '18', '19', '20', '21', '22', '23', '24', '25',
'26', '27', '28', '29', '30', '31', '32', '33', '34', '35', '36', '37',
'38', '39', '40', '41', '42', '43', '44', '45', '46', '47', '48', '49',
'50', '51', '52', '53', '54', '55', '56', '57', '58', '59', '60', '61',
'62', '63', '64', '65', '66', '67', '68', '69', '70', '71', '72', '73',
'74', '75', '76', '77', '78', '79', '80', '81', '82', '83', '84', '85',
'86', '87', '88', '89', '90', '91', '92', '93', '94', '95', '96', '97',
'98', '99', '100', '101', '102', '103', '104', '105', '106', '107', '108',
'109', '110', '111', '112', '113', '114', '115', '116', '117', '118',
'119', '120', '121', '122', '123', '124', '125', '126', '127', '128',
'129', '130', '131', '132', '133', '134', '135', '136', '137', '138',
'139', '140', '141', '142', '143', '144', '145', '146', '147', '148',
'149', '150', '151', '152', '153', '154', '155', '156', '157', '158',
'159', '160', '161', '162', '163', '164', '165', '166', '167', '168',
'169', '170', '171', '172', '173', '174', '175', '176', '177', '178',
'179', '180', '181', '182', '183', '184', '185', '186', '187', '188',
'189', '190', '191', '192', '193', '194', '195', '196', '197', '198',
'199', '200', '201', '202', '203', '204', '205', '206', '207', '208',
'209', '210', '211', '212', '213', '214', '215', '216', '217', '218',
'219', '220', '221', '222', '223', '224', '225', '226', '227', '228',
'229', '230', '231', '232', '233', '234', '235', '236', '237', '238',
'239', '240', '241', '242', '243', '244', '245', '246', '247', '248',
'249', '250', '251', '252', '253', '254', '255', '256', '257', '258',
'259', '260', '261', '262', '263', '264', '265', '266', '267', '268',
'269', '270', '271', '272', '273', '274', '275', '276', '277', '278',
'279', '280', '281', '282', '283', '284', '285', '286', '287', '288',
'289', '290', '291', '292', '293', '294', '295', '296', '297', '298',
'299', '300', '301', '302', '303', '304', '305', '306', '307', '308',
'309', '310', '311', '312', '313', '314', '315', '316', '317', '318',
'319', '320', '321', '322', '323', '324', '325', '326', '327', '328',
'329', '330', '331', '332', '333', '334', '335', '336', '337', '338',
'339', '340', '341', '342', '343', '344', '345', '346', '347', '348',
'349', '350', '351', '352', '353', '354', '355', '356', '357', '358',
'359', '360', '361', '362', '363', '364', '365', '366', '367', '368',
'369', '370', '371', '372', '373', '374', '375', '376', '377', '378',
'379', '380', '381', '382', '383', '384', '385', '386', '387', '388',
'389', '390', '391', '392', '393', '394', '395', '396', '397', '398',
'399', '400', '401', '402', '403', '404', '405', '406', '407', '408',
'409', '410', '411', '412', '413', '414', '415', '416', '417', '418',
'419', '420', '421', '422', '423', '424', '425', '426', '427', '428',
'429', '430', '431', '432', '433', '434', '435', '436', '437', '438',
'439', '440', '441', '442', '443', '444', '445', '446', '447', '448',
'449', '450', '451', '452', '453', '454', '455', '456', '457', '458',
'459', '460', '461', '462', '463', '464', '465', '466', '467', '468',
'469', '470', '471', '472', '473', '474', '475', '476', '477', '478',
'479', '480', '481', '482', '483', '484', '485', '486', '487', '488',
'489', '490', '491', '492', '493', '494', '495', '496', '497', '498',
'499', '500', '501', '502', '503', '504', '505', '506', '507', '508',
'509', '510', '511', '512', '513', '514', '515', '516', '517', '518',
'519', '520', '521', '522', '523', '524', '525', '526', '527', '528',
'529', '530', '531', '532', '533', '534', '535', '536', '537', '538',
'539', '540', '541', '542', '543', '544', '545', '546', '547', '548',
'549', '550', '551', '552', '553', '554', '555', '556', '557', '558',
'559', '560', '561', '562', '563', '564', '565', '566', '567', '568',
'569', '570', '571', '572', '573', '574', '575', '576', '577', '578',
'579', '580', '581', '582', '583', '584', '585', '586', '587', '588',
'589', '590', '591', '592', '593', '594', '595', '596', '597', '598',
'599', '600', '601', '602', '603', '604', '605', '606', '607', '608',
'609', '610', '611', '612', '613', '614', '615', '616', '617', '618',
'619', '620', '621', '622', '623', '624', '625', '626', '627', '628',
'629', '630', '631', '632', '633', '634', '635', '636', '637', '638',
'639', '640', '641', '642', '643', '644', '645', '646', '647', '648',
'649', '650', '651', '652', '653', '654', '655', '656', '657', '658',
'659', '660', '661', '662', '663', '664', '665', '666', '667', '668',
'669', '670', '671', '672', '673', '674', '675', '676', '677', '678',
'679', '680', '681', '682', '683', '684', '685', '686', '687', '688',
'689', '690', '691', '692', '693', '694', '695', '696', '697', '698',
'699', '700', '701', '702', '703', '704', '705', '706', '707', '708',
'709', '710', '711', '712', '713', '714', '715', '716', '717', '718',
'719', '720', '721', '722', '723', '724', '725', '726', '727', '728',
'729', '730', '731', '732', '733', '734', '735', '736', '737', '738',
'739', '740', '741', '742', '743', '744', '745', '746', '747', '748',
'749', '750', '751', '752', '753', '754', '755', '756', '757', '758',
'759', '760', '761', '762', '763', '764', '765', '766', '767', '768',
'769', '770', '771', '772', '773', '774', '775', '776', '777', '778',
'779', '780', '781', '782', '783', '784', '785', '786', '787', '788',
'789', '790', '791', '792', '793', '794', '795', '796', '797', '798',
'799', '800', '801', '802', '803', '804', '805', '806', '807', '808',
'809', '810', '811', '812', '813', '814', '815', '816', '817', '818',
'819', '820', '821', '822', '823', '824', '825', '826', '827', '828',
'829', '830', '831', '832', '833', '834', '835', '836', '837', '838',
'839', '840', '841', '842', '843', '844', '845', '846', '847', '848',
'849', '850', '851', '852', '853', '854', '855', '856', '857', '858',
'859', '860', '861', '862', '863', '864', '865', '866', '867', '868',
'869', '870', '871', '872', '873', '874', '875', '876', '877', '878',
'879', '880', '881', '882', '883', '884', '885', '886', '887', '888',
'889', '890', '891', '892', '893', '894', '895', '896', '897', '898',
'899', '900', '901', '902', '903', '904', '905', '906', '907', '908',
'909', '910', '911', '912', '913', '914', '915', '916', '917', '918',
'919', '920', '921', '922', '923', '924', '925', '926', '927', '928',
'929', '930', '931', '932', '933', '934', '935', '936', '937', '938',
'939', '940', '941', '942', '943', '944', '945', '946', '947', '948',
'949', '950', '951', '952', '953', '954', '955', '956', '957', '958',
'959', '960', '961', '962', '963', '964', '965', '966', '967', '968',
'969', '970', '971', '972', '973', '974', '975', '976', '977', '978',
'979', '980', '981', '982', '983', '984', '985', '986', '987', '988',
'989', '990', '991', '992', '993', '994', '995', '996', '997', '998', '999'
]

data_source_type = 'ClsSourceImageList'
base_root = 'data/imagenet_raw/'
data_train_list = base_root + 'meta/train_labeled.txt'
data_train_root = base_root + 'train/'
data_test_list = base_root + 'meta/val_labeled.txt'
data_test_root = base_root + 'validation/'
image_size2 = 299
image_size1 = int((256 / 224) * image_size2)

dataset_type = 'ClsDataset'
img_norm_cfg = dict(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
train_pipeline = [
dict(type='RandomResizedCrop', size=image_size2),
dict(type='RandomHorizontalFlip'),
dict(type='ToTensor'),
dict(type='Normalize', **img_norm_cfg),
dict(type='Collect', keys=['img', 'gt_labels'])
]
test_pipeline = [
dict(type='Resize', size=image_size1),
dict(type='CenterCrop', size=image_size2),
dict(type='ToTensor'),
dict(type='Normalize', **img_norm_cfg),
dict(type='Collect', keys=['img', 'gt_labels'])
]

data = dict(
imgs_per_gpu=32, # total 256
workers_per_gpu=4,
train=dict(
type=dataset_type,
data_source=dict(
list_file=data_train_list,
root=data_train_root,
type=data_source_type),
pipeline=train_pipeline),
val=dict(
type=dataset_type,
data_source=dict(
list_file=data_test_list,
root=data_test_root,
type=data_source_type),
pipeline=test_pipeline))

eval_config = dict(initial=False, interval=1, gpu_collect=True)
eval_pipelines = [
dict(
mode='test',
data=data['val'],
dist_eval=True,
evaluators=[
dict(type='ClsEvaluator', topk=(1, 5), class_list=class_list)
],
)
]

# optimizer
optimizer = dict(type='SGD', lr=0.1, momentum=0.9, weight_decay=0.0001)

# learning policy
lr_config = dict(policy='step', step=[30, 60, 90])
checkpoint_config = dict(interval=10)

# runtime settings
total_epochs = 100

predict = dict(
type='ClassificationPredictor',
pipelines=[
dict(type='Resize', size=image_size1),
dict(type='CenterCrop', size=image_size2),
dict(type='ToTensor'),
dict(type='Normalize', **img_norm_cfg),
dict(type='Collect', keys=['img'])
])

log_config = dict(
interval=10,
hooks=[dict(type='TextLoggerHook'),
dict(type='TensorboardLoggerHook')])

export = dict(export_type='raw', export_neck=True)
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
# A config with the optimization settings from https://arxiv.org/pdf/1602.07261
# May run with 20 GPUs
_base_ = 'configs/base.py'
_base_ = 'configs/classification/imagenet/inception/inceptionv3_b32x8_100e.py'

num_classes = 1000
# model settings
Expand Down Expand Up @@ -32,162 +32,7 @@
)
])

class_list = [
'0', '1', '2', '3', '4', '5', '6', '7', '8', '9', '10', '11', '12', '13',
'14', '15', '16', '17', '18', '19', '20', '21', '22', '23', '24', '25',
'26', '27', '28', '29', '30', '31', '32', '33', '34', '35', '36', '37',
'38', '39', '40', '41', '42', '43', '44', '45', '46', '47', '48', '49',
'50', '51', '52', '53', '54', '55', '56', '57', '58', '59', '60', '61',
'62', '63', '64', '65', '66', '67', '68', '69', '70', '71', '72', '73',
'74', '75', '76', '77', '78', '79', '80', '81', '82', '83', '84', '85',
'86', '87', '88', '89', '90', '91', '92', '93', '94', '95', '96', '97',
'98', '99', '100', '101', '102', '103', '104', '105', '106', '107', '108',
'109', '110', '111', '112', '113', '114', '115', '116', '117', '118',
'119', '120', '121', '122', '123', '124', '125', '126', '127', '128',
'129', '130', '131', '132', '133', '134', '135', '136', '137', '138',
'139', '140', '141', '142', '143', '144', '145', '146', '147', '148',
'149', '150', '151', '152', '153', '154', '155', '156', '157', '158',
'159', '160', '161', '162', '163', '164', '165', '166', '167', '168',
'169', '170', '171', '172', '173', '174', '175', '176', '177', '178',
'179', '180', '181', '182', '183', '184', '185', '186', '187', '188',
'189', '190', '191', '192', '193', '194', '195', '196', '197', '198',
'199', '200', '201', '202', '203', '204', '205', '206', '207', '208',
'209', '210', '211', '212', '213', '214', '215', '216', '217', '218',
'219', '220', '221', '222', '223', '224', '225', '226', '227', '228',
'229', '230', '231', '232', '233', '234', '235', '236', '237', '238',
'239', '240', '241', '242', '243', '244', '245', '246', '247', '248',
'249', '250', '251', '252', '253', '254', '255', '256', '257', '258',
'259', '260', '261', '262', '263', '264', '265', '266', '267', '268',
'269', '270', '271', '272', '273', '274', '275', '276', '277', '278',
'279', '280', '281', '282', '283', '284', '285', '286', '287', '288',
'289', '290', '291', '292', '293', '294', '295', '296', '297', '298',
'299', '300', '301', '302', '303', '304', '305', '306', '307', '308',
'309', '310', '311', '312', '313', '314', '315', '316', '317', '318',
'319', '320', '321', '322', '323', '324', '325', '326', '327', '328',
'329', '330', '331', '332', '333', '334', '335', '336', '337', '338',
'339', '340', '341', '342', '343', '344', '345', '346', '347', '348',
'349', '350', '351', '352', '353', '354', '355', '356', '357', '358',
'359', '360', '361', '362', '363', '364', '365', '366', '367', '368',
'369', '370', '371', '372', '373', '374', '375', '376', '377', '378',
'379', '380', '381', '382', '383', '384', '385', '386', '387', '388',
'389', '390', '391', '392', '393', '394', '395', '396', '397', '398',
'399', '400', '401', '402', '403', '404', '405', '406', '407', '408',
'409', '410', '411', '412', '413', '414', '415', '416', '417', '418',
'419', '420', '421', '422', '423', '424', '425', '426', '427', '428',
'429', '430', '431', '432', '433', '434', '435', '436', '437', '438',
'439', '440', '441', '442', '443', '444', '445', '446', '447', '448',
'449', '450', '451', '452', '453', '454', '455', '456', '457', '458',
'459', '460', '461', '462', '463', '464', '465', '466', '467', '468',
'469', '470', '471', '472', '473', '474', '475', '476', '477', '478',
'479', '480', '481', '482', '483', '484', '485', '486', '487', '488',
'489', '490', '491', '492', '493', '494', '495', '496', '497', '498',
'499', '500', '501', '502', '503', '504', '505', '506', '507', '508',
'509', '510', '511', '512', '513', '514', '515', '516', '517', '518',
'519', '520', '521', '522', '523', '524', '525', '526', '527', '528',
'529', '530', '531', '532', '533', '534', '535', '536', '537', '538',
'539', '540', '541', '542', '543', '544', '545', '546', '547', '548',
'549', '550', '551', '552', '553', '554', '555', '556', '557', '558',
'559', '560', '561', '562', '563', '564', '565', '566', '567', '568',
'569', '570', '571', '572', '573', '574', '575', '576', '577', '578',
'579', '580', '581', '582', '583', '584', '585', '586', '587', '588',
'589', '590', '591', '592', '593', '594', '595', '596', '597', '598',
'599', '600', '601', '602', '603', '604', '605', '606', '607', '608',
'609', '610', '611', '612', '613', '614', '615', '616', '617', '618',
'619', '620', '621', '622', '623', '624', '625', '626', '627', '628',
'629', '630', '631', '632', '633', '634', '635', '636', '637', '638',
'639', '640', '641', '642', '643', '644', '645', '646', '647', '648',
'649', '650', '651', '652', '653', '654', '655', '656', '657', '658',
'659', '660', '661', '662', '663', '664', '665', '666', '667', '668',
'669', '670', '671', '672', '673', '674', '675', '676', '677', '678',
'679', '680', '681', '682', '683', '684', '685', '686', '687', '688',
'689', '690', '691', '692', '693', '694', '695', '696', '697', '698',
'699', '700', '701', '702', '703', '704', '705', '706', '707', '708',
'709', '710', '711', '712', '713', '714', '715', '716', '717', '718',
'719', '720', '721', '722', '723', '724', '725', '726', '727', '728',
'729', '730', '731', '732', '733', '734', '735', '736', '737', '738',
'739', '740', '741', '742', '743', '744', '745', '746', '747', '748',
'749', '750', '751', '752', '753', '754', '755', '756', '757', '758',
'759', '760', '761', '762', '763', '764', '765', '766', '767', '768',
'769', '770', '771', '772', '773', '774', '775', '776', '777', '778',
'779', '780', '781', '782', '783', '784', '785', '786', '787', '788',
'789', '790', '791', '792', '793', '794', '795', '796', '797', '798',
'799', '800', '801', '802', '803', '804', '805', '806', '807', '808',
'809', '810', '811', '812', '813', '814', '815', '816', '817', '818',
'819', '820', '821', '822', '823', '824', '825', '826', '827', '828',
'829', '830', '831', '832', '833', '834', '835', '836', '837', '838',
'839', '840', '841', '842', '843', '844', '845', '846', '847', '848',
'849', '850', '851', '852', '853', '854', '855', '856', '857', '858',
'859', '860', '861', '862', '863', '864', '865', '866', '867', '868',
'869', '870', '871', '872', '873', '874', '875', '876', '877', '878',
'879', '880', '881', '882', '883', '884', '885', '886', '887', '888',
'889', '890', '891', '892', '893', '894', '895', '896', '897', '898',
'899', '900', '901', '902', '903', '904', '905', '906', '907', '908',
'909', '910', '911', '912', '913', '914', '915', '916', '917', '918',
'919', '920', '921', '922', '923', '924', '925', '926', '927', '928',
'929', '930', '931', '932', '933', '934', '935', '936', '937', '938',
'939', '940', '941', '942', '943', '944', '945', '946', '947', '948',
'949', '950', '951', '952', '953', '954', '955', '956', '957', '958',
'959', '960', '961', '962', '963', '964', '965', '966', '967', '968',
'969', '970', '971', '972', '973', '974', '975', '976', '977', '978',
'979', '980', '981', '982', '983', '984', '985', '986', '987', '988',
'989', '990', '991', '992', '993', '994', '995', '996', '997', '998', '999'
]

data_source_type = 'ClsSourceImageList'
base_root = 'data/imagenet_raw/'
data_train_list = base_root + 'meta/train_labeled.txt'
data_train_root = base_root + 'train/'
data_test_list = base_root + 'meta/val_labeled.txt'
data_test_root = base_root + 'validation/'
image_size2 = 299
image_size1 = int((256 / 224) * image_size2)

dataset_type = 'ClsDataset'
img_norm_cfg = dict(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
train_pipeline = [
dict(type='RandomResizedCrop', size=image_size2),
dict(type='RandomHorizontalFlip'),
dict(type='ToTensor'),
dict(type='Normalize', **img_norm_cfg),
dict(type='Collect', keys=['img', 'gt_labels'])
]
test_pipeline = [
dict(type='Resize', size=image_size1),
dict(type='CenterCrop', size=image_size2),
dict(type='ToTensor'),
dict(type='Normalize', **img_norm_cfg),
dict(type='Collect', keys=['img', 'gt_labels'])
]

data = dict(
imgs_per_gpu=32, # total 256
workers_per_gpu=4,
train=dict(
type=dataset_type,
data_source=dict(
list_file=data_train_list,
root=data_train_root,
type=data_source_type),
pipeline=train_pipeline),
val=dict(
type=dataset_type,
data_source=dict(
list_file=data_test_list,
root=data_test_root,
type=data_source_type),
pipeline=test_pipeline))

eval_config = dict(initial=False, interval=1, gpu_collect=True)
eval_pipelines = [
dict(
mode='test',
data=data['val'],
dist_eval=True,
evaluators=[
dict(type='ClsEvaluator', topk=(1, 5), class_list=class_list)
],
)
]

# optimizer
optimizer = dict(
Expand All @@ -199,20 +44,3 @@

# runtime settings
total_epochs = 200

predict = dict(
type='ClassificationPredictor',
pipelines=[
dict(type='Resize', size=image_size1),
dict(type='CenterCrop', size=image_size2),
dict(type='ToTensor'),
dict(type='Normalize', **img_norm_cfg),
dict(type='Collect', keys=['img'])
])

log_config = dict(
interval=10,
hooks=[dict(type='TextLoggerHook'),
dict(type='TensorboardLoggerHook')])

export = dict(export_type='raw', export_neck=True)
Loading

0 comments on commit d05b7e7

Please sign in to comment.