This repository contains ECG Recognition Library - an open-source library for assisting in diagnostics of heart conditions from ECG. This library provides functionality of heart condition detection, differential diagnostics, and risk markers evaluation. The library handles ECGs in both formats, as signal or as a photo.
ECG Recognition Library provides tools for diagnosistcs of several conditions:
- MI (Myocardial Infarction)
- BER (Benign Early Repolarisation)
- HYP (Hypertrophy)
- STTC (ST/T Change)
- CD (Conduction Disturbance)
Main features implemented in the library
- Recognition of ECG signal from a photo of printed ECG
- Detection of ST-elevation
- MI risk markers evaluation
- MI/BER differential diagnosis
- Health check for MI, HYP, STTC, CD
Thus compared to other frameworks, ECG Recognition Library:
- Handles ECGs provised as a signal as well as an image
- Provides a range of functionality useful for MI diagnostics
- Provides health checks for several conditions
Details of implemented methods.
- Required ECG frequency: 500 Hz
- Required length: ≥ 5s
Additional image requirement:
- Image should contain only ECG
- no background
- no foreign objects
- Each image should contain only one lead
Requirements: Python 3.7
- [optional] create Python environment, e.g.
$ conda create -n ECG python=3.7 $ conda activate ECG
- install requirements from requirements.txt
$ pip install -r requirements.txt
- install the library as a package
$ python -m pip install git+ssh://[email protected]/aimclub/ECG
Requirements: Python 3.7
- [optional] create Python environment, e.g.
$ conda create -n ECG python=3.7 $ conda activate ECG
- clone repository and install all requirements
$ git clone [email protected]:aimclub/ECG.git $ cd ECG $ pip install -r requirements.txt
- run tests
$ pytest tests/unit_tests.py $ pytest tests/integration_tests.py
- fix code style to match PEP8 automatically with autopep8
$ pip install autopep8==1.6.0 $ autopep8 --max-line-length=90 -i -r ECG $ autopep8 --max-line-length=90 -i -r tests
- check that code style matches PEP8
$ pip install pycodestyle==2.8.0 $ pycodestyle --max-line-length=90 --ignore=E266 ECG $ pycodestyle --max-line-length=90 --ignore=E266 tests
- build a PyPi package locally
$ python3 -m pip install --upgrade build $ python3 -m build
The general description is available here.
ECG Recognition Library API is available here
We provide a tutorial demonstrating suggested usage pipeline
The contribution guide is available in the repository.
In Russian:
- Ватьян А.С., Гусарова Н.Ф., Змиевский Д.А., Кабышев М.А., Передреев Д.А., Полевая Т.А., Татаринова А.А., Томилов И.В.Автоматизированная оценка параметров ЭКГ в условиях пандемии COVID-19. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2022, vol. 22, no. 5, in press
- Пчелкин А.Ю., Гусарова Н.Ф. Кроссплатформенная разработка на базе вебтехнологий для поддержки решений в проблемно-ориентированных системах управления // Экономика. Право. Инновации. 2022. № 1. С. 41–47. http://dx.doi.org/10.17586/2713-1874-2022-1-41-47.
The library was developed in ITMO University.
Реализовано при финансовой поддержке Фонда поддержки проектов Национальной технологической инициативы в рамках реализации "дорожной карты" развития высокотехнологичного направления "Искусственный интеллект" на период до 2030 года (Договор № 70-2021-00187)
This research is financially supported by the Foundation for National Technology Initiative's Projects Support as a part of the roadmap implementation for the development of the high-tech field of Artificial Intelligence for the period up to 2030 (agreement 70-2021-00187)
- A. Vatyan - team leader
- N. Gusarova - chief scientific advisor
- T. Polevaya
- D. Zmievsky
- D. Peredreev
- M. Kabyshev
- Alexandra Vatyan [email protected] for collaboration suggestions
- Tatyana Polevaya [email protected] for technical questions