Skip to content

ai-ku/dist

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

13 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

DISTS	Copyright (c) 2012, Mehmet Ali Yatbaz, Enis Sert, Deniz Yuret

Usage: 
Options:
   -h Display this information
   -d <distance-type>. Set <distance-type> 
      0 for Euclid
      1 for Cosine(default)
      2 for Manhattan
      3 for Maximum
      4 for Jensen
   -u <upper-bound>	Calculate 1000NN of the rows up to the <upper-bound>(default number of rows)
   -l <lower-bound>	Calculate 1000NN of the rows starting from <lower-bound>(default 0)
   -p <arg>	Run <arg> parallel jobs to calculate kNN(default 1)
   -k <arg>	Calculate <arg>NN of the data(default 1000)
   -v 		Verbose
input-stream format sorted according to column ids (c_i)
<n:number of elements in the row> <c_i:column id> <c_i_v:column val> ... <c_n:column id> <c_n_v:column val>

Algorithm: Calculates 5 different distance "metric" between sparse
input vectors and returns the top N nearest neighbors of each data
instance.  The workload can be distributed to threads.

Sparse Data Format: First element of each row is the number of
non-zero elements on the that row. After the first element each pair
of input is the column id and the value of that column for the given
vector.

Install: Everything is standard C, so just typing make should give you
an executable.

Please see the file LICENSE for terms of use.

About

Calculates a variety of distances between vectors.

Resources

License

Stars

Watchers

Forks

Packages

No packages published