-
Notifications
You must be signed in to change notification settings - Fork 0
/
blur_face.py
50 lines (41 loc) · 1.69 KB
/
blur_face.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
from pyimagesearch.face_blurring import anonymize_face_pixelate
from pyimagesearch.face_blurring import anonymize_face_simple
import numpy as np
import cv2
import os
def blur_image(file_name):
# TODO: Make filepaths consts
prototxtPath = os.path.sep.join([os.getcwd(), "face_detector/deploy.prototxt"])
weightsPath = os.path.sep.join([os.getcwd(), "face_detector/res10_300x300_ssd_iter_140000.caffemodel"])
net = cv2.dnn.readNet(prototxtPath, weightsPath)
# load the input image from disk, clone it, and grab the image spatial
# dimensions
image = cv2.imread(file_name)
(h, w) = image.shape[:2]
# construct a blob from the image
blob = cv2.dnn.blobFromImage(image, 1.0, (300, 300),
(104.0, 177.0, 123.0))
# pass the blob through the network and obtain the face detections
print("[INFO] computing face detections...")
net.setInput(blob)
detections = net.forward()
# loop over the detections
for i in range(0, detections.shape[2]):
# extract the confidence (i.e., probability)
confidence = detections[0, 0, i, 2]
# filter out weak detections by ensuring the confidence is greater
# than the minimum confidence
if confidence > .5:
# compute the (x, y)-coordinates of the bounding box for the
# object
box = detections[0, 0, i, 3:7] * np.array([w, h, w, h])
(startX, startY, endX, endY) = box.astype("int")
# extract the face ROI
face = image[startY:endY, startX:endX]
face = anonymize_face_simple(face, factor=3.0)
image[startY:endY, startX:endX] = face
# display the original image and the output image with the blurred
# face(s) side by side
cv2.imwrite(file_name, image)
# TODO: Had a return to stop script from completing, not sure if its needed
return file_name