This project is part of the Computational Intelligence Lab course (2019) at ETH.
The project website can be found here.
Team: sasglentame
Name | |
---|---|
Sotiris Anagnostidis | [email protected] |
Adamos Solomou | [email protected] |
Ioannis Sachinoglou | [email protected] |
---- | [email protected] |
.
├── data # should contain files data_train.csv sampleSubmission.csv
├── experiment_results # results from experiments
├── graphs # directory for saving graphs
├── preprocessed # directory for saving .csv
├── raw # directory for saving outputs
├── report
├── report.pdf # Final report
├── src
├── experiments # experiment scripts
├── requirements.txt
└── README.md
To run on cluster:
# create environment
python -m venv "cil-2019"
# activate environment
source cil-2019/bin/activate
# or use existing environment
# source $HOME/.local/bin/virtualenvwrapper.sh
# workon "cil-2019"
# install dependencies
pip install --user -r requirements.txt
# load modules
module load python_gpu/3.6.4
To replicate final submission:
python main.py
To replicate experiments:
cd src/experiments # You should be in the experiment directory for the experiments to run
python <experiment>
To run cross-validation test:
python cross_validation.py --model <model> [--<parameters> <value>]
Valid models names are the following:
autoencoder
, bsgd
, svd_shrinkage
, ncf