Skip to content

adamsolomou/recommender

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

94 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Collaborative Filtering

This project is part of the Computational Intelligence Lab course (2019) at ETH.

The project website can be found here.

Team: sasglentame

Name Email
Sotiris Anagnostidis [email protected]
Adamos Solomou [email protected]
Ioannis Sachinoglou [email protected]
---- [email protected]

Project structure

.
├── data                               # should contain files data_train.csv  sampleSubmission.csv
├── experiment_results                 # results from experiments
    ├── graphs                         # directory for saving graphs
    ├── preprocessed                   # directory for saving .csv
    ├── raw                            # directory for saving outputs
├── report                              
    ├── report.pdf                     # Final report
├── src 
    ├── experiments                    # experiment scripts
├── requirements.txt
└── README.md

Getting Started

To run on cluster:

# create environment
python -m venv "cil-2019"

# activate environment 
source cil-2019/bin/activate

# or use existing environment
# source $HOME/.local/bin/virtualenvwrapper.sh
# workon "cil-2019"

# install dependencies 
pip install --user -r requirements.txt

# load modules
module load python_gpu/3.6.4

To replicate final submission:

python main.py 

To replicate experiments:

cd src/experiments # You should be in the experiment directory for the experiments to run
python <experiment> 

To run cross-validation test:

python cross_validation.py --model <model> [--<parameters> <value>]

Valid models names are the following:

autoencoder, bsgd , svd_shrinkage, ncf

Documentation

Report

About

Collaborative Filtering for Movie Recommendation

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 4

  •  
  •  
  •  
  •