Skip to content

A multi-backend (Pytorch, Tensorflow, Jax) implementation of LLaMA using keras-core

License

Notifications You must be signed in to change notification settings

absadiki/llama-lite

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

22 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

LLaMA-Lite

A Multi-Backend (Pytorch, Tensorflow, Jax) implementation of LLaMA using keras-core.

Open In Colab

Installation

  • Install your backend of choice (Pytorch, Tensorflow or Jax)
  • Then install llama_lite
git clone https://github.com/abdeladim-s/llama-lite && cd llama-lite
pip install -e .

Inference usage

  • Get the tinyllama model weights from HF.
import os

os.environ["KERAS_BACKEND"] = "torch"
# os.environ["KERAS_BACKEND"] = "tensorflow"
# os.environ["KERAS_BACKEND"] = "jax"

from llama_lite.model import get_model_from_ckpt

model = get_model_from_ckpt('stories15M.pt')

prompt = "Once upon a time,"
max_new_tokens = 50
res = model.generate(prompt=prompt, max_new_tokens=max_new_tokens)
print(res)

License

MIT

About

A multi-backend (Pytorch, Tensorflow, Jax) implementation of LLaMA using keras-core

Resources

License

Stars

Watchers

Forks

Releases

No releases published