Skip to content

Commit

Permalink
P&M: More fixes
Browse files Browse the repository at this point in the history
  • Loading branch information
Zentrik committed May 29, 2024
1 parent 2603ca3 commit 40b6295
Show file tree
Hide file tree
Showing 6 changed files with 30 additions and 21 deletions.
4 changes: 3 additions & 1 deletion CodingAndCryptography/03_information_theory.tex
Original file line number Diff line number Diff line change
Expand Up @@ -163,14 +163,16 @@ \subsection{Shannon's first coding theorem}
Then this source has information rate $H$.
\end{theorem}

\begin{proof}
\begin{proof}[Proof (Non Examinable)]
% Let $\varepsilon > \frac{1}{n}$, for each $\epsilon_n$ $\exists n_0(\epsilon_n)$ s.t. $\exists$ typical sets $T_n \; \forall n \geq n_0(\epsilon_0)$.
% Let $T_k \subseteq \mathcal A^n$ be $\epsilon_n$ typical sets where $n_0(\epsilon_n) \leq k \leq n_0(\epsilon_{n+1})$.
% Define $n_k = \min \qty{n : T_k}$
% Then, $\forall \; n \geq n_0(\varepsilon)$, $\forall \; (x_1, \dots, x_n) \in T_n$ we have $p(x_1, \dots, x_n) \geq 2^{-n(H + \varepsilon)}$.
% Therefore, $1 \geq \prob{T_n} \geq \abs{T_n} 2^{-n(H + \varepsilon)}$, giving $\frac{1}{n} \log \abs{T_n} \leq H + \varepsilon$.
% Taking $A_n = T_n$ in the defn of reliable encoding shows that the source is reliably encodable at rate $H + \varepsilon$.

Note the first part of this proof is incorrect.

Let $\varepsilon > 0$, and let $T_n \subseteq \mathcal A^n$ be typical sets.
Then, $\forall \; n \geq n_0(\varepsilon)$, $\forall \; (x_1, \dots, x_n) \in T_n$ we have $p(x_1, \dots, x_n) \geq 2^{-n(H + \varepsilon)}$.
Therefore, $1 \geq \prob{T_n} \geq \abs{T_n} 2^{-n(H + \varepsilon)}$, giving $\frac{1}{n} \log \abs{T_n} \leq H + \varepsilon$.
Expand Down
Binary file modified CodingAndCryptography/cc.pdf
Binary file not shown.
2 changes: 1 addition & 1 deletion ProbAndMeasure/01_measures.tex
Original file line number Diff line number Diff line change
Expand Up @@ -304,7 +304,7 @@ \subsection{Uniqueness of extension}
We then define
\[ \mathcal D'' = \qty{B \in \mathcal D : \forall A \in \mathcal D, B \cap A \in \mathcal D} \]
Note that $\mathcal A \subseteq \mathcal D''$ by $(\ast)$.
Running the same argument as before, we can show that $\mathcal D''$ is a $d$-system. So $\mathcal{D}'' = \mathbb{D}$.
Running the same argument as before, we can show that $\mathcal D''$ is a $d$-system. So $\mathcal{D}'' = \mathcal{D}$.
But then (by the definition of $\mathcal{D}''$), $\forall B \in \mathcal{D}, A \in \mathcal{D} \implies B \cap A \in \mathcal{D}$, i.e. $\mathcal{D}$ is a $\pi$-system (check that $\emptyset \in \mathcal{D}$).

So $\mathcal{D}$ is a $\sigma$-algebra containing $\mathcal{A}$, hence $\mathcal{D} \supseteq \sigma(\mathcal{A})$.
Expand Down
36 changes: 21 additions & 15 deletions ProbAndMeasure/05_function_spaces_and_norms.tex
Original file line number Diff line number Diff line change
Expand Up @@ -9,7 +9,7 @@ \subsection{Norms}
\end{enumerate}
\end{definition}

\begin{definition}
\begin{definition}[$L^p$]
Let $(E, \mathcal E, \mu)$ be a measure space.
We define $L^p(E,\mathcal E,\mu) = L^p(\mu) = L^p$ for the space of measurable functions $f \colon E \to \mathbb R$ s.t. $\norm{f}_p$ is finite, where
\[ \norm{f}_p = \begin{cases}
Expand All @@ -27,7 +27,7 @@ \subsection{Norms}
We write $[f]$ for the equivalence class of functions that are equal a.e.
The functional $\norm{\wildcard}_p$ is then a norm on $\mathcal L^p = \qty{[f] : f \in L^p}$.

\begin{proposition}[Chebyshev's inequality, Markov's inequality]
\begin{proposition}[Chebyshev's Inequality, Markov's Inequality]
Let $f \colon E \to \mathbb R$ be non-negative and measurable.
Then $\forall \lambda > 0$,
\[ \mu(\qty{x \in E : f(x) \geq \lambda}) = \mu(f \geq \lambda) \leq \frac{\mu(f)}{\lambda} \]
Expand All @@ -37,6 +37,10 @@ \subsection{Norms}
Integrate the inequality $\lambda 1_{\qty{f \geq \lambda}} \leq f$, which holds on $E$.
\end{proof}

\begin{remark}
Let $f(x) = (x - \mu)^2$ to obtain Chebyshev's Inequality.
\end{remark}

In particular if $g \in L^p$, $p < \infty$ and $\lambda > 0$ then $\mu(\abs{g} \geq \lambda) = \mu(\abs{g}^p \geq \lambda^p) \leq \frac{\mu(|g|^p)}{\lambda^p} \leq \infty$ this gives the tail estimates as $\lambda \to \infty$.

\begin{definition}[Convex Function]
Expand Down Expand Up @@ -301,12 +305,12 @@ \subsection{Conditional Expectation}
If $\mathcal{G}$ a sub-$\sigma$ algebra of $\mathcal{F}$ (i.e. $\mathcal{G} \subseteq \mathcal{F}$), then $L^2(\Omega, \mathcal{G}, \mathbb{P})$ is a closed subspace of $L^2(\Omega, \mathcal{F}, \mathbb{P})$.

\begin{definition}[Conditional Expectation]
For $X \in L^2(\Omega, \mathcal{F}, \mathbb{P})$ s.t. $X$ measurable wrt $\mathcal{G}$, $\norm{X - Y}_2 \geq \norm{X - \mathbb{E}[X \mid \mathcal{G}]}_2 \quad \forall Y$ that are $\mathcal{G}$ measurable.\\
For $X \in L^2(\Omega, \mathcal{F}, \mathbb{P})$ s.t. $X$ measurable wrt $\mathcal{G}$, $\norm{X - Y}_2 \geq \norm{X - \mathbb{E}[X \mid \mathcal{G}]}_2 \; \forall Y$ that are $\mathcal{G}$ measurable.\\
The\footnote{This is actually only a variant of the conditional expectation.} \vocab{conditional expectation of $X$ given $\mathcal{G}$}, $\mathbb{E}[X \mid \mathcal{G}]$ is defined as the orthogonal projection of $X$ on $L^2(\Omega, \mathcal{G}, \mathbb{P})$.
\end{definition}

\begin{question}
How to define $\mathcal{E}[X \mid \mathcal{G}]$ if $X \in L^1(\Omega, \mathcal{F}, \mathbb{P})$, see Advanced Probability.
How to define $\mathbb{E}[X \mid \mathcal{G}]$ if $X \in L^1(\Omega, \mathcal{F}, \mathbb{P})$, see Advanced Probability.
\end{question}

\begin{example}
Expand All @@ -325,13 +329,13 @@ \subsection{$L^p$ Convergence and Uniform Integrability}
For $(\Omega, \mathcal{F}, \mathbb{P})$, what are the implications between convergence: a.s., in $L^p$ for $1 \leq p < \infty$, in $\mathbb{P}$ and in distribution.

Let $f_n = n 1_{(0, 1/n)}$ on $\qty((0, 1), \mathcal{B}, \lambda)$.
$f_n \to 0$ a.s. but $\mathbb{E}\abs{f_n} = \mathbb{E}[f_n] = 1 \ \forall n$ so a.s. $\centernot\implies$ $L^p$ convergence.
$f_n \to 0$ a.s. but $\mathbb{E}[\abs{f_n}] = \mathbb{E}[f_n] = 1 \ \forall n$ so a.s. $\centernot\implies$ $L^p$ convergence.

$\mathbb{P}(|X_n - X| > \epsilon) \leq \frac{\mathbb{E}|X_n - X|^p}{\epsilon^p}$ by Markov's Inequality, so convergence in $L^p$ for $1 \leq p < \infty \implies$ convergence in $\mathbb{P}$.

\begin{theorem}[Dominated Convergence Theorem]
Let $X_n$ be r.v.s on $(\Omega, \mathcal F, \mathbb P)$ s.t. $\abs{X_n} \leq Y$ for integrable r.v. $Y$ and they converge in $\mathbb{P}$ to $X$.
Then $X_n \to X$ in $L^1(\mathbb P)$, i.e. $\mathbb{E}|X_n - X| \to 0$.
Then $X_n \to X$ in $L^1(\mathbb P)$, i.e. $\mathbb{E}[|X_n - X|] \to 0$.
\end{theorem}

\begin{question}
Expand Down Expand Up @@ -362,17 +366,19 @@ \subsection{$L^p$ Convergence and Uniform Integrability}
Note that $1_{\bigcup_{m \geq n} A_m} \to 1_{\bigcap_n \bigcup_{m \geq n} A_n} = 0$ a.s., so $\expect{\abs{X} 1_{\bigcup_{m \geq n} A_m}} \to \expect{\abs{X} 1_{\bigcap_n \bigcup_{m \geq n}}} = 0$ by DCT \Lightning.

\begin{definition}[Uniformly Integrable]
For a collection $\mathcal X \subseteq L^1(\mathbb P)$ of r.v.s, we say $\mathcal X$ is \vocab{uniformly integrable (UI)} if it is bounded in $L^1(\mathbb P)$\footnote{I.e. $\sup_{x \in \mathcal{X}} \norm{X}_1 = \sup_{x \in \mathcal{X}} \mathbb{E}[|X|] = I_{\mathcal{X}}(1) < \infty$.}, and
\[ I_{\mathcal X}(\delta) = \sup \qty{ \expect{\abs{X}1_A} : \prob{A} \leq \delta, X \in \mathcal X} \to 0 \text{ as } \delta \to 0.\]
For a collection $\mathcal X \subseteq L^1(\mathbb P)$ of r.v.s, we say $\mathcal X$ is \vocab{uniformly integrable (UI)} if it is bounded in $L^1(\mathbb P)$\footnote{I.e. $\sup_{X \in \mathcal{X}} \norm{X}_1 = \sup_{X \in \mathcal{X}} \mathbb{E}[|X|] = I_{\mathcal{X}}(1) < \infty$.}, and
\[ I_{\mathcal X}(\delta) = \sup \qty{ \expect{\abs{X}1_A} : \prob{A} \leq \delta, A \in \mathcal{F}, X \in \mathcal X} \to 0 \text{ as } \delta \to 0.\]
\end{definition}

\begin{remark}
\begin{enumerate}
\item Any single integrable r.v. is UI.
Also, true for any finite collection of integrable r.v.s.
Also, if $\mathcal{X} = \qty{X : X \text{ a r.v. s.t. } |X| \leq Y \text{ for some } Y \in L^1}$ as $\sup_{X \in \mathcal{X}} \mathbb{E}[|X| 1_A] \leq \mathbb{E}[Y 1_A]$ implies $I_{\mathcal{X}}(\delta) \leq I_Y(\lambda) \to 0$ as $\delta \to 0$.
Also, if $\mathcal{X} = \qty{X : X \text{ a r.v. s.t. } |X| \leq Y \text{ for some } Y \in L^1}$ as $\sup_{X \in \mathcal{X}} \mathbb{E}[|X| 1_A] \leq \mathbb{E}[Y 1_A]$ implies $I_{\mathcal{X}}(\delta) \leq I_Y(\delta) \to 0$ as $\delta \to 0$.
\item If $\mathcal X$ is bounded in $L^p(\mathbb P)$ for $p > 1$, then by H\"older's inequality,
\[ \expect{\abs{X}1_A} \leq \underbrace{\norm{X}_p}_{\text{bounded}} \cdot \underbrace{\prob{A}^{\frac 1 q}}_{\leq \delta^{\frac 1 q} \to 0} \]
Hence, $\mathcal{X}$ is UI.
\item Note that $X_n = n1_{\qty[0,\frac{1}{n}]}$ for the Lebesgue measure $\mu$ on $[0,1]$ is bounded in $L^1(\mathbb P)$ but not uniformly integrable.
\end{enumerate}
\end{remark}

Expand Down Expand Up @@ -408,17 +414,17 @@ \subsection{$L^p$ Convergence and Uniform Integrability}
\end{theorem}

\begin{proof}
(1) $\implies$ (2i):
(1) $\implies$ (2):
Using Markov's inequality,
\[ \prob{\abs{X_n - X} > \varepsilon} \leq \frac{\expect{\abs{X_n - X}}}{\varepsilon} \to 0 \]
so $X_n \to X$ in $\mathbb{P}$.

Choose $N$ s.t. $\mathbb{E}|X_n - X| < \frac{\epsilon}{2} \ \forall n \geq N$.
Choose $\delta$ s.t. $\mathbb{E}[|X| 1_A] \leq \frac{\epsilon}{2}$ and $\mathbb{E}[|X_n|1_A] \leq \epsilon \quad \forall n = 1, \dots, N-1$ when $\mathbb{P}(A) < \delta$.
Choose $N$ s.t. $\mathbb{E}[|X_n - X|] < \frac{\epsilon}{2} \ \forall n \geq N$.
$\{X_1, \dots, X_{N-1}, X\}$ is finite so UI.
So Choose $\delta$ s.t. $\mathbb{E}[|X| 1_A] \leq \frac{\epsilon}{2}$ and $\mathbb{E}[|X_n|1_A] \leq \epsilon \; \forall n = 1, \dots, N-1$ when $\mathbb{P}(A) < \delta$.
\begin{align*}
\expect{\abs{X_n} 1_A} \leq \expect{\abs{X_n - X} 1_A} + \expect{\abs{X} 1_A} \leq \frac{\varepsilon}{2} + \frac{\varepsilon}{2}
\end{align*}
$\{X_1, \dots, X_{N-1}, X\}$ is finite so UI.
So $\mathcal{X}$ is UI.

(2) $\implies$ (1):
Expand All @@ -430,8 +436,8 @@ \subsection{$L^p$ Convergence and Uniform Integrability}
so $X \in L^1(\mathbb P)$.

Next, we define truncated r.v.s $X_n^K = \max(-K, \min(K, X_n))$ and $X^K = \max(-K, \min(K, X))$.
Then $X_n^K \to X^K$ in $\mathbb{P}$ (as $\mathbb{P}(|X_n^K - X^K| > \epsilon) \leq \mathbb{P}(|X_n - X| < \epsilon)$)\footnote{Aside: If $X_n \to X$ in $\mathbb{P}$ and $f$ cts, then $f(X_n) \to f(X)$ in $\mathbb{P}$.}.
And $|X_n^K| \leq K \quad \forall n$ so by BCT, $X_n^K \to X^K$ in $L^1$.
Then $X_n^K \to X^K$ in $\mathbb{P}$ (as $\mathbb{P}(|X_n^K - X^K| > \epsilon) \leq \mathbb{P}(|X_n - X| > \epsilon)$)\footnote{Aside: If $X_n \to X$ in $\mathbb{P}$ and $f$ cts, then $f(X_n) \to f(X)$ in $\mathbb{P}$.}.
And $|X_n^K| \leq K \; \forall n$ so by BCT, $X_n^K \to X^K$ in $L^1$.
Now,
\begin{align*}
\expect{\abs{X_n - X}} &\leq \expect{\abs{X_n - X_n^K}} + \expect{\abs{X_n^K - X^K}} + \expect{\abs{X^K - X}} \\
Expand Down
9 changes: 5 additions & 4 deletions ProbAndMeasure/07_ergodic_theory.tex
Original file line number Diff line number Diff line change
Expand Up @@ -33,7 +33,8 @@ \subsection{Laws of Large Numbers}
So we can assume $\mu = 0$.
For distinct indices $i, j, k, \ell$, by independence and the Cauchy--Schwarz inequality, we have
\begin{align*}
0 = \expect{X_i X_j X_k X_\ell} = \expect{X_i^2 X_j X_k} = \expect{X_i^3 X_j};\quad \expect{X_i^2 X_j^2} \leq \sqrt{\expect{X_i^4}}\sqrt{\expect{X_j^4}} \leq M
0 &= \expect{X_i X_j X_k X_\ell} = \expect{X_i^2 X_j X_k} = \expect{X_i^3 X_j} \\
\expect{X_i^2 X_j^2} &\leq \sqrt{\expect{X_i^4}}\sqrt{\expect{X_j^4}} \leq M
\end{align*}
So we can compute
\begin{align*}
Expand Down Expand Up @@ -95,7 +96,7 @@ \subsection{Invariants - Measure Preserving Transformations}
The maps $\Theta_a(x) = x + a$ modulo 1 and $\Theta(x) = 2x$ modulo 1 are both m.p., and ergodic unless $a \in \mathbb Q$ (Sheet 4).
\end{example}

\subsection{Ergodic theorems}
\subsection{Ergodic Theorems}
\begin{lemma}[Maximal Ergodic Lemma] \label{lem:max}
Let $(E, \mathcal E, \mu)$ be a $\sigma$-finite measure space.
Let $\Theta \colon E \to E$ be m.p..
Expand Down Expand Up @@ -167,7 +168,7 @@ \subsection{Ergodic theorems}
\end{theorem}

\begin{remark}
If $\Theta$ ergodic, $\hat{f}$ is constant a.e..
If $\Theta$ ergodic, $\bar{f}$ is constant a.e..

Relating back to the gas example, $x, \Theta(x), \dots$ is the trajectory of a gas particle.
Then $\frac{S_n(f)}{n}$ is the average of $f$ along the trajectory (time average).
Expand Down Expand Up @@ -244,7 +245,7 @@ \subsection{Ergodic theorems}
But $a < b$ and $\mu(D) < \infty$, so $\mu(D) = 0$.
\end{proof}

\begin{theorem}[von Neumann's $L^p$ ergodic theorem]
\begin{theorem}[von Neumann's $L^p$ Ergodic Theorem]
Let $\mu(E) < \infty$ and $1 \leq p < \infty$.
Then for $f \in L^p(\mu)$, $\frac{S_n(f)}{n} \to \overline f$ in $L^p$ as $n \to \infty$.
\end{theorem}
Expand Down
Binary file modified ProbAndMeasure/probmeasure.pdf
Binary file not shown.

0 comments on commit 40b6295

Please sign in to comment.