This is a dedicated re-implementation of CLIP4STR: A Simple Baseline for Scene Text Recognition with Pre-trained Vision-Language Model .
- [26/12/2024] CLIP4STR will appear at TIP! The early access version is available at https://ieeexplore.ieee.org/document/10816351. A final version is also at https://arxiv.org/abs/2305.14014.
- [02/05/2024] Add new CLIP4STR models pre-trained on DataComp-1B, LAION-2B, and DFN-5B. Add CLIP4STR models trained on RBU(6.5M).
This is a third-party implementation of the paper CLIP4STR: A Simple Baseline for Scene Text Recognition with Pre-trained Vision-Language Model.
The framework of CLIP4STR. It has a visual branch and a cross-modal branch. The cross-modal branch refines the prediction of the visual branch for the final output. The text encoder is partially frozen.
CLIP4STR aims to build a scene text recognizer with the pre-trained vision-language model. In this re-implementation, we try to reproduce the performance of the original paper and evaluate the effectiveness of pre-trained VL models in the STR area.
First of all, you need to download the STR dataset.
-
We recommend you follow the instructions of PARSeq at its parseq/Datasets.md . The gdrive links are gdrive-link1 and gdrive-link2 from PARSeq.
-
For convenient, you can also download the STR dataset with real training images at BaiduYunPan str_dataset.
-
For the RBU(6.5M) training dataset, it is a combination of [the above STR dataset] + [val data of benchmarks (SVT, IIIT5K, IC13, IC15)] + [Union14M_L_lmdb_format]. For convenient, you can also download at BaiduYunPan str_dataset_ub.
-
weights of CLIP pre-trained models:
- CLIP-ViT-B/32
- CLIP-ViT-B/16
- CLIP-ViT-L/14
- OpenCLIP-ViT-B-16-DataComp-XL-s13B-b90K.bin
- OpenCLIP-ViT-L-14-DataComp-XL-s13B-b90K.bin
- OpenCLIP-ViT-H-14-laion2B-s32B-b79K.bin
- appleDFN5B-CLIP-ViT-H-14.bin
- For models from huggingface.co, you should rename them as the shown names.
Generally, directories are organized as follows:
${ABSOLUTE_ROOT}
├── dataset
│ │
│ ├── str_dataset_ub
│ └── str_dataset
│ ├── train
│ │ ├── real
│ │ └── synth
│ ├── val
│ └── test
│
├── code
│ │
│ └── clip4str
│
├── output (save the output of the program)
│
│
├── pretrained
│ └── clip (download the CLIP pre-trained weights and put them here)
│ └── ViT-B-16.pt
│
...
Requires Python >= 3.8
and PyTorch >= 1.12
.
The following commands are tested on a Linux machine with CUDA Driver Version 525.105.17
and CUDA Version 11.3
.
conda create --name clip4str python=3.8.5
conda install pytorch==1.12.0 torchvision==0.13.0 torchaudio==0.12.0 -c pytorch
pip install -r requirements.txt
If you meet problems in continual training of an intermediate checkpoint, try to upgrade your PyTorch
conda install pytorch==1.13.1 torchvision==0.14.1 torchaudio==0.13.1 pytorch-cuda=11.7 -c pytorch -c nvidia
CLIP4STR-B
means using the CLIP-ViT-B/16
as the backbone, and CLIP4STR-L
means using the CLIP-ViT-L/14
as the backbone.
Method | Train data | IIIT5K | SVT | IC13 | IC15 | IC15 | SVTP | CUTE | HOST | WOST |
---|---|---|---|---|---|---|---|---|---|---|
3,000 | 647 | 1,015 | 1,811 | 2,077 | 645 | 288 | 2,416 | 2,416 | ||
CLIP4STR-B | MJ+ST | 97.70 | 95.36 | 96.06 | 87.47 | 84.02 | 91.47 | 94.44 | 80.01 | 86.75 |
CLIP4STR-L | MJ+ST | 97.57 | 95.36 | 96.75 | 88.02 | 84.40 | 91.78 | 94.44 | 81.08 | 87.38 |
CLIP4STR-B | Real(3.3M) | 99.20 | 98.30 | 98.23 | 91.44 | 90.61 | 96.90 | 99.65 | 77.36 | 87.87 |
CLIP4STR-L | Real(3.3M) | 99.43 | 98.15 | 98.52 | 91.66 | 91.14 | 97.36 | 98.96 | 79.22 | 89.07 |
Method | Train data | COCO | ArT | Uber | Checkpoint | |
---|---|---|---|---|---|---|
9,825 | 35,149 | 80,551 | ||||
CLIP4STR-B | MJ+ST | 66.69 | 72.82 | 43.52 | a5e3386222 | |
CLIP4STR-L | MJ+ST | 67.45 | 73.48 | 44.59 | 3544c362f0 | |
CLIP4STR-B | Real(3.3M) | 80.80 | 85.74 | 86.70 | d70bde1f2d | |
CLIP4STR-L | Real(3.3M) | 81.97 | 85.83 | 87.36 | f125500adc |
All models are trained on RBU(6.5M).
Method | Pre-train | Train | IIIT5K | SVT | IC13 | IC15 | IC15 | SVTP | CUTE | HOST | WOST |
---|---|---|---|---|---|---|---|---|---|---|---|
3,000 | 647 | 1,015 | 1,811 | 2,077 | 645 | 288 | 2,416 | 2,416 | |||
CLIP4STR-B | DC-1B | RBU | 99.5 | 98.3 | 98.6 | 91.4 | 91.1 | 98.0 | 99.0 | 79.3 | 88.8 |
CLIP4STR-L | DC-1B | RBU | 99.6 | 98.6 | 99.0 | 91.9 | 91.4 | 98.1 | 99.7 | 81.1 | 90.6 |
CLIP4STR-H | LAION-2B | RBU | 99.7 | 98.6 | 98.9 | 91.6 | 91.1 | 98.5 | 99.7 | 80.6 | 90.0 |
CLIP4STR-H | DFN-5B | RBU | 99.5 | 99.1 | 98.9 | 91.7 | 91.0 | 98.0 | 99.0 | 82.6 | 90.9 |
Method | Pre-train | Train | COCO | ArT | Uber | log | Checkpoint |
---|---|---|---|---|---|---|---|
9,825 | 35,149 | 80,551 | |||||
CLIP4STR-B | DC-1B | RBU | 81.3 | 85.8 | 92.1 | 6e9fe947ac_log | 6e9fe947ac, BaiduYun |
CLIP4STR-L | DC-1B | RBU | 82.7 | 86.4 | 92.2 | 3c9d881b88_log | 3c9d881b88, BaiduYun |
CLIP4STR-H | LAION-2B | RBU | 82.5 | 86.2 | 91.2 | 5eef9f86e2_log | 5eef9f86e2, BaiduYun |
CLIP4STR-H | DFN-5B | RBU | 83.0 | 86.4 | 91.7 | 3e942729b1_log | 3e942729b1, BaiduYun |
- Before training, you should set the path properly. Find the
/PUT/YOUR/PATH/HERE
inconfigs
,scripts
,strhub/vl_str
, andstrhub/str_adapter
. For example, the/PUT/YOUR/PATH/HERE
in theconfigs/main.yaml
. Then replace it with your own path. A global searching and replacement is recommended.
For CLIP4STR with CLIP-ViT-B
, refer to
bash scripts/vl4str_base.sh
8 NVIDIA GPUs with more than 24GB memory (per GPU) are required.
For users with limited GPUs,
you can change trainer.gpus=A
, trainer.accumulate_grad_batches=B
, and model.batch_size=C
under the condition A * B * C = 1024
in the bash scripts.
Do not modify the code, the PyTorch Lightning
will handle the left.
For CLIP4STR with CLIP-ViT-L
, refer to
bash scripts/vl4str_large.sh
We also provide the training script of CLIP4STR + Adapter
described in the original paper,
bash scripts/str_adapter.sh
bash test.sh {gpu_id} {subpath_of_ckpt}
For example,
bash scripts/test.sh 0 clip4str_base16x16_d70bde1f2d.ckpt
If you want to read characters from an image, try:
bash test.sh {gpu_id} {subpath_of_ckpt} {image_folder_path}
For example,
bash scripts/read.sh 0 clip4str_base16x16_d70bde1f2d.ckpt misc/test_images
Output:
image_1576.jpeg: Chicken
If you have implemented CLIP4STR in other languages, it would be great if you could add a link to your repo here.
Please check #6.
@article{zhao2024clip4str,
author={Zhao, Shuai and Quan, Ruijie and Zhu, Linchao and Yang, Yi},
journal={IEEE Transactions on Image Processing},
title={CLIP4STR: A Simple Baseline for Scene Text Recognition with Pre-trained Vision-Language Model},
year={2024},
pages={1-1},
doi={10.1109/TIP.2024.3512354}}
- baudm/parseq
- openai/CLIP
- mlfoundations/open_clip
- huggingface/transformers
- large-ocr-model/large-ocr-model.github.io
- Mountchicken/Union14M
- mzhaoshuai/CenterCLIP
- VamosC/CoLearning-meet-StitchUp
- VamosC/CapHuman
- Dr. Xiaohan Wang from Stanford University.