Skip to content

Code Snippets for Data Structures and Algorithms. Problems from LeetCode, Codeforces and CodeChef for practice.

Notifications You must be signed in to change notification settings

UtsavKash19/DSA-Codes-Snippets

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

1 Commit
 
 

Repository files navigation

Typing SVG

It contains curated list of all data stuctures and algorithm used in various competitive programming websites such as Leetcode, Codechef, Codeforces, AtCoder etc. These data structres are listed topicwise and new problems are added regularly.

DSA Code Snippets

1. Array

1.1. Find Kth Largest Element in Array

int findKthLargest(vector<int>& A, int k) {
    nth_element(begin(A), begin(A) + k - 1, end(A), greater<int>());
    return A[k - 1];
}

1.2. Kadane Algorithm

int maxSumSubarray (vector<int> A) {
	int n = A.size();
	int local_max = 0;
	int global_max = -1e9;
    for(int i = 0; i < n; i++) {
        local_max = max(A[i], A[i] + local_max);

        if(local_max > global_max) {
            global_max = local_max;
        }
    }
    return global_max;
}


void solve() { 
	int n;
	cin >> n;
	vector<ll> a(n);
	for(int i = 0; i < n; i++) {
		cin >> a[i];
	}

	ll mx = maxSumSubArray(a);
	cout << mx << "\n";
}

1.3. Rotate Vector Left or right

// Array - 1 2 3 4 5 6 7 8 9

// Rotate array to left by 3 positions.
// 4 5 6 7 8 9 1 2 3
rotate(vec1.begin(), vec1.begin() + 3, vec1.end());

// Rotate array to right by 3 positions.
// 7 8 9 1 2 3 4 5 6
rotate(vec1.begin(), vec1.begin() - 3, vec1.end());

1.4. Find element in vector and replace it

auto it = find (V.begin(), V.end(), num);
// it - V.begin() will given index of given num [0-indexed]
V[it - V.begin()] = otherNum;

1.5. Slicing of Vector in C++

vector<int> slicing(vector<int>& arr, int X, int Y){
    auto start = arr.begin() + X;
    auto end = arr.begin() + Y + 1;
    vector<int> result(Y - X + 1);
 
    copy(start, end, result.begin());
    return result;
}

1.6. Erase Duplicates in Vector

unorder_set<int> s;
for(int i : vec) {
    s.insert(i);
}

vec.assign(s.begin(), s.end());
sort(vec.begin(), vec.end());

Another Method: Slower than the above method

sort(vec.begin(), vec.end());
vec.erase(unique(vec.begin(), vec.end()), vec.end());

1.7. Common Elements in Vector

int main() {
	int countCommon = 0;
	int n = 6;
	vector<int> vec1 = {1, 3, 5, 7, 8, 9};
	int m = 7;
	vector<int> vec2 = {1, 2, 3, 7, 9, 4, 8};

	sort(vec1.begin(), vec1.end());
	sort(vec2.begin(), vec2.end());

	vector<int> v(vec1.size() + vec2.size());

	auto it = set_intersection(vec1.begin(), vec1.end(),vec2.begin(), vec2.end(),v.begin());

	cout << "Common Elements : " << it - v.begin() << "\n";
	cout << "The elements are : ";

	for ( auto st = v.begin(); st != it; ++st) {
		cout << *(st) << " ";
	}
}

1.8. Convert Vector to Unordered Set

vector<string> V = {"One", "Two", "Three", "Four", "Five"};
unordered_set<string> S(V.begin(), V.end());

// Use Cases
// -> To find any particular element : S.count("word");
// -> To erase any particular element : S.erase("word");

// 705 LeetCode - Design HashSet

1.9. Array Removals

// Given an array arr[] of size N and an integer K. The task is to find the minimum number of elements that should be removed, such that Amax-Amin<=K.
// After the  removal of elements, Amax and Amin is considered among the remaining elements.

class Solution{
    public:
    int removals(vector<int>& arr, int k){
        //Code here
        sort(arr.begin(),arr.end());
       int n=arr.size();
       int res=INT_MIN;
       for(int i=0;i<n;i++)
       {
           for(int j=i;j<n;j++)
           {
               if((arr[j]-arr[i])<=k)
               {
                   res=max(res,j-i+1);
               }
           }
       }
       return n-res;
    }
};

// Input: N = 9, K = 4  
// arr[] = {1,3,4,9,10,11,12,17,20}
// Output: 5
// Explanation: Remove 1, 3, 4 from beginning
// and 17, 20 from the end.

2. Bit Manipulation

2.1. Check if ith bit is on

for(int i = 0; i < 32; i++) {
    if(x & (1 << i)) {
        // True if ith bit of x is set
    }
}

2.2. Number of set bits in number

int setbitsCnt = __builtin_popcount(x);
long int setbitsCnt = __builtin_popcountl(x);
long long setbitsCnt = __builtin_popcountll(x);

2.3. Unset the ith bit in number

int num = 104;
// Unset the 6th bit (bits start from 0 index)
int pos = 6;
cout << "Before : " << bitset<8>(num) << "\n";
num &= (~(1 << pos));
cout << "After :: " << bitset<8>(num) << "\n";

2.4. Lexicographical next bit permutation

// Current permutation of bits
  unsigned int v = 11;
  
  // Next permutation of bits
  unsigned int w;
  
  unsigned int t = (v | (v - 1)) + 1;  
  w = t | ((((t & -t) / (v & -v)) >> 1) - 1);
  
  
  cout << "v : " << bitset<8>(v) << "\n";
  cout << "w : " << bitset<8>(w) << "\n";

2.5. Round number to next highest power of 2

unsigned int v = 43;
v--;
v |= v >> 1;
v |= v >> 2;
v |= v >> 4;
v |= v >> 8;
v |= v >> 16;
v++;

cout << v << "\n";
// Output - 64 (which is power of 2).

2.6. Bitwise OR of Vector using STL

int result = reduce(nums.begin(), nums.end(), 0, bit_or());

2.7. Masks and Submasks Enumeration

void bitmasks() {
	int n = 5;
	vector<vector<int>> masks(1 << n, vector<int>()); // 32 ( 2 ^ 5)

	// Traverse all masks
	for(int mask = 0; mask < (1 << n); mask++) {
		for(int i = 0; i < n; i++) {
			if(mask & (1 << i)) {
				masks[mask].push_back(i);
				cout << mask << " mask has this bit on => " << i << "\n";
			}
		}
	}

	vector<vector<int>> submasks(1 << n, vector<int>()); 

	// Traverse all submasks of masks
	for(int mask = 1; mask < (1 << n); mask++) {
		for(int submask = mask; submask; submask = (submask - 1) & mask) {
			submasks[mask].push_back(submask);
			cout << mask << " mask has this submask => " << submask << "\n";
		}
	}
}

3. Custom Comparator

3.1. Sorting by Comparator

bool cmp(const pair<string, long> &p1, const pair<string, long> &p2)
{
    if(p1.second!=p2.second)
        return p1.second < p2.second;
    return p1.first < p2.first;
}

sort(vect.begin(), vect.end(), cmp);

3.2. Sorting vector of strings based on number of ones - Comparator

void solve()
{
	int n;
	cin >> n;
	vector<string> s(n);

	for(int i = 0; i < n; i++) {
		cin >> s[i];
	}
	sort(s.begin(), s.end(), [&](string x, string y) {
        return count(x.begin(), x.end(), '1') < count(y.begin(), y.end(), '1');
    });

    for(int i = 0; i < n; i++) {
    	cout << s[i] << "\n";
    }
}

// Input
// 5
// 10101
// 10000000
// 010101
// 00111111
// 11000000000

// Output
// 10000000
// 11000000000
// 10101
// 010101
// 00111111

3.3. Sorting Structure using Comparator

struct city {
	string name;
	int score, index;
};

int n;

bool comp(const city a, const city b) {
	if(a.name != b.name) {
		return a.name < b.name;
	}
	return a.score > b.score;
}

void solve() {
	cin >> n;
	vector<city> cities(n);
	for(int i = 0; i < n; i++) {
		cin >> cities[i].name >> cities[i].score;
		cities[i].index = i + 1;
	}	

	sort(cities.begin(), cities.end(), comp);

	for(int i = 0; i < n; i++) {
		cout << cities[i].index << "\n";
	}
}

// Input
// 6
// khabarovsk 20
// moscow 10
// kazan 50
// kazan 35
// moscow 60
// khabarovsk 40

// Output
// 3
// 4
// 6
// 1
// 5
// 2

3.4. Sorting Vector Based on Another Vector

int main() {
    int n = 7;
    vector<int> a = {4, 8, 1, 3, 2, 9, 11};
    
    vector<int> ind(n);
    iota(ind.begin(), ind.end(), 0);
    for(auto a: ind) {
        cout << a << " ";
    }
    cout << "\n";
    
    sort(ind.begin(), ind.end(), [&](int i, int j) {
        return a[i] > a[j];
    });

    for(auto a: ind) {
        cout << a << " ";
    }
    cout << "\n";
}

4. Data Structures

4.1. Prefix Sum 2D

#include<bits/stdc++.h>
using namespace std;

constexpr int MAX_SIDE = 1000;
int prefixSum2D[MAX_SIDE + 1][MAX_SIDE + 1];
int array2D[MAX_SIDE + 1][MAX_SIDE + 1];

void solve()
{
	int N;
	int Q;
	cin >> N >> Q;
	// read the 2D array
	for (int i = 1; i <= N; i++) {
		for (int j = 1; j <= N; j++) {
			cin >> array2D[i][j];
		}
	}

	// build the prefix sum array
	for (int i = 1; i <= N; i++) {
		for (int j = 1; j <= N; j++) {
			prefixSum2D[i][j] = array2D[i][j]
						+ prefixSum2D[i - 1][j]
						+ prefixSum2D[i][j - 1]
						- prefixSum2D[i - 1][j - 1];
		}
	}

	for (int q = 0; q < Q; q++) {
		int x1, x2, y1, y2;
		cin >> x1 >> y1 >> x2 >> y2;
		cout << prefixSum2D[x2][y2]
				- prefixSum2D[x1-1][y2]
				- prefixSum2D[x2][y1-1]
				+ prefixSum2D[x1-1][y1-1] << '\n';
	}

}

int main(void) {
	solve();
}

4.2. Difference Array

vector<int> initializeDiffArray(vector<int>& A){
    int n = A.size();
    vector<int> D(n + 1);
    
    D[0] = A[0], D[n] = 0;
    for (int i = 1; i < n; i++)
        D[i] = A[i] - A[i - 1];
    return D;
}

void update(vector<int>& D, int l, int r, int x) {
    D[l] += x;
    D[r + 1] -= x;
}
    
vector<int> getArray(vector<int>& A, vector<int>& D) {
    vector<int> ans;
    for (int i = 0; i < A.size(); i++) {
        if (i == 0) {
            A[i] = D[i];
        }
        else {
            A[i] = D[i] + A[i - 1];
        }
        ans.push_back(A[i]);
    }
    return ans;
}

// LeetCode - Shifting Letters II

4.3. Fenwick Tree - Binary Indexed Tree

struct FenwickTree {
	vector<int> bit;  // binary indexed tree
	int n;

	FenwickTree(int n) {
		this->n = n + 1;
		bit.assign(n + 1, 0ll);
	}

	void add(int idx, int val) {
		for (++idx; idx < n; idx += idx & -idx)
			bit[idx] += val;
	}

	void range_add(int l, int r, int val) {
		add(l, val);
		add(r + 1, -val);
	}

	int get(int idx) { //
		int ret = 0;
		for (++idx; idx > 0ll; idx -= idx & -idx)
			ret += bit[idx];
		return ret;
	}
};

Problems Chef and Queries

4.4. Union Find - Disjoint Set Union

// Using Structure
struct UnionFind{
    int num;
    vector<int> rs, parent;
    UnionFind(int n): num(n), rs(n, 1), parent(n, 0) {
        iota(parent.begin(), parent.end(), 0);
    }

    int find(int x) {
        return (x == parent[x] ? x : parent[x] = find(parent[x]));
    }

    bool same(int x, int y) {
        return find(x) == find(y);
    }

    void unite(int x, int y) {
        x = find(x); y = find(y);
        if (x == y) return;
        if (rs[x] < rs[y]) swap(x, y);
        rs[x] += rs[y];
        parent[y] = x;
        num--;
    }

    int size(int x) {
        return rs[find(x)];
    }

    int countSets() const {
        return num;
    }
};

// Using class
class UnionFind {
    private:
        vector<int> id, rank;
        int cnt;
    public:
        UnionFind(int cnt) : cnt(cnt) {
            id = vector<int>(cnt);
            rank = vector<int>(cnt, 0);
            for (int i = 0; i < cnt; ++i) id[i] = i;
        }
        int find(int p) {
            if (id[p] == p) return p;
            return id[p] = find(id[p]);
        }
        int getCount() { 
            return cnt; 
        }
        bool connected(int p, int q) { 
            return find(p) == find(q); 
        }
        void connect(int p, int q) {
            int i = find(p), j = find(q);
            if (i == j) return;
            if (rank[i] < rank[j]) {
                id[i] = j;  
            } else {
                id[j] = i;
                if (rank[i] == rank[j]) rank[j]++;
            }
            --cnt;
        }
};

// Union Find that also return the vector of size of components.
class UnionFind {
    vector<int> id, size;
public:
    UnionFind(int n) : id(n), size(n, 1) {
        for (int i = 0; i < n; ++i) id[i] = i;
    }
    void connect(int a, int b) {
        int x = find(a), y = find(b);
        if (x == y) return;
        id[x] = y;
        size[y] += size[x];
    }
    int find(int a) {
        return id[a] == a ? a : (id[a] = find(id[a]));
    }
    vector<int> &getSizes() {
        return size;
    }
};

4.5. Policy Based Data Structure - Ordered Set

#include <ext/pb_ds/assoc_container.hpp> // Common file
#include <ext/pb_ds/tree_policy.hpp>
#include <functional> // for less

using namespace __gnu_pbds;
using namespace std;

typedef tree<int, null_type, less<int>, rb_tree_tag, tree_order_statistics_node_update> ordered_set;

int main()
{
    ordered_set p;
    p.insert(5);
    p.insert(2);
    p.insert(6);
    p.insert(4);
 
    // value at 3rd index in sorted array.
    cout << "The value at 3rd index ::" << *p.find_by_order(3) << endl;
 
    // index of number 6
    cout << "The index of number 6::" << p.order_of_key(6) << endl;
 
    // number 7 not in the set but it will show the index number if it was there in sorted array.
    cout << "The index of number seven ::" << p.order_of_key(7) << endl;
 
    return 0;
}

Problems

  1. Maximum Possible Sweetness
  2. Number of Pairs
  3. Nested Segments
  4. Optimal Subsequences

4.6. Wavelet Matrix

#include <bits/stdc++.h>
using namespace std;


struct SuccinctIndexableDictionary {
  size_t length;
  size_t blocks;
  vector< unsigned > bit, sum;
 
  SuccinctIndexableDictionary() = default;
 
  SuccinctIndexableDictionary(size_t length) : length(length), blocks((length + 31) >> 5) {
    bit.assign(blocks, 0U);
    sum.assign(blocks, 0U);
  }
 
  void set(int k) {
    bit[k >> 5] |= 1U << (k & 31);
  }
 
  void build() {
    sum[0] = 0U;
    for(int i = 1; i < blocks; i++) {
      sum[i] = sum[i - 1] + __builtin_popcount(bit[i - 1]);
    }
  }
 
  bool operator[](int k) {
    return (bool((bit[k >> 5] >> (k & 31)) & 1));
  }
 
  int rank(int k) {
    return (sum[k >> 5] + __builtin_popcount(bit[k >> 5] & ((1U << (k & 31)) - 1)));
  }
 
  int rank(bool val, int k) {
    return (val ? rank(k) : k - rank(k));
  }
};

template< typename T, int MAXLOG >
struct WaveletMatrix {
  size_t length;
  SuccinctIndexableDictionary matrix[MAXLOG];
  int mid[MAXLOG];
 
  WaveletMatrix() = default;
 
  WaveletMatrix(vector< T > v) : length(v.size()) {
    vector< T > l(length), r(length);
    for(int level = MAXLOG - 1; level >= 0; level--) {
      matrix[level] = SuccinctIndexableDictionary(length + 1);
      int left = 0, right = 0;
      for(int i = 0; i < length; i++) {
        if(((v[i] >> level) & 1)) {
          matrix[level].set(i);
          r[right++] = v[i];
        } else {
          l[left++] = v[i];
        }
      }
      mid[level] = left;
      matrix[level].build();
      v.swap(l);
      for(int i = 0; i < right; i++) {
        v[left + i] = r[i];
      }
    }
  }
 
  pair< int, int > succ(bool f, int l, int r, int level) {
    return {matrix[level].rank(f, l) + mid[level] * f, matrix[level].rank(f, r) + mid[level] * f};
  }
 
  // v[k]
  T access(int k) {
    T ret = 0;
    for(int level = MAXLOG - 1; level >= 0; level--) {
      bool f = matrix[level][k];
      if(f) ret |= T(1) << level;
      k = matrix[level].rank(f, k) + mid[level] * f;
    }
    return ret;
  }
 
  T operator[](const int &k) {
    return access(k);
  }
 
  // count i s.t. (0 <= i < r) && v[i] == x
  int rank(const T &x, int r) {
    int l = 0;
    for(int level = MAXLOG - 1; level >= 0; level--) {
      tie(l, r) = succ((x >> level) & 1, l, r, level);
    }
    return r - l;
  }
 
  // k-th(0-indexed) smallest number in v[l,r)
  T kth_smallest(int l, int r, int k) {
    assert(0 <= k && k < r - l);
    T ret = 0;
    for(int level = MAXLOG - 1; level >= 0; level--) {
      int cnt = matrix[level].rank(false, r) - matrix[level].rank(false, l);
      bool f = cnt <= k;
      if(f) {
        ret |= T(1) << level;
        k -= cnt;
      }
      tie(l, r) = succ(f, l, r, level);
    }
    return ret;
  }
 
  // k-th(0-indexed) largest number in v[l,r)
  T kth_largest(int l, int r, int k) {
    return kth_smallest(l, r, r - l - k - 1);
  }
 
  // count i s.t. (l <= i < r) && (v[i] < upper)
  int range_freq(int l, int r, T upper) {
    int ret = 0;
    for(int level = MAXLOG - 1; level >= 0; level--) {
      bool f = ((upper >> level) & 1);
      if(f) ret += matrix[level].rank(false, r) - matrix[level].rank(false, l);
      tie(l, r) = succ(f, l, r, level);
    }
    return ret;
  }
 
  // count i s.t. (l <= i < r) && (lower <= v[i] < upper)
  int range_freq(int l, int r, T lower, T upper) {
    return range_freq(l, r, upper) - range_freq(l, r, lower);
  }
 
  // max v[i] s.t. (l <= i < r) && (v[i] < upper)
  T prev_value(int l, int r, T upper) {
    int cnt = range_freq(l, r, upper);
    return cnt == 0 ? T(-1) : kth_smallest(l, r, cnt - 1);
  }
 
  // min v[i] s.t. (l <= i < r) && (lower <= v[i])
  T next_value(int l, int r, T lower) {
    int cnt = range_freq(l, r, lower);
    return cnt == r - l ? T(-1) : kth_smallest(l, r, cnt);
  }
};
 

int main() 
{
    const int n = 7;
    
    vector<int> A(n);
    
    for(auto &a : A) cin >> a;
    
    WaveletMatrix<int, n> mat(A);
    
    auto ans = mat.kth_smallest(0, 4, 3);
    cout << "Kth smallest element in range [L, R) : " << ans << "\n";
    
    auto rangefreq = mat.range_freq(0, n, 5);
    cout << "Frequency of element in range [L, R) : " << rangefreq << "\n";
    
    auto kthmax = mat.kth_largest(0, n, 2);
    cout << "Kth Largest Element in Vector : " << kthmax << "\n";
    
}

4.7. Segment Tree

vector<int> height, lazy;

void push_up(int i) {
    height[i] = max(height[i*2], height[i*2+1]);
}

void push_down(int i) {
    if (lazy[i]) {
        lazy[i*2] = lazy[i*2+1] = lazy[i];
        height[i*2] = height[i*2+1] = lazy[i];
        lazy[i] = 0;
    }
}

void update(int i, int l, int r, int L, int R, int val) {
    if (L <= l && r <= R) {
        height[i] = val;
        lazy[i] = val;
        return;
    }
    push_down(i);

    int mid = l + (r-l)/2;
    if (L < mid) update(i*2, l, mid, L, R, val);
    if (R > mid) update(i*2+1, mid, r, L, R, val);
    push_up(i);
}

int query(int i, int l, int r, int L, int R) {
    if (L <= l && r <= R) return height[i];
    push_down(i);
    int res = 0;;
    int mid = l + (r-l)/2;
    if (L < mid) res = max(res, query(i*2, l, mid, L, R));
    if (R > mid) res = max(res, query(i*2+1, mid, r, L, R));
    return res;
}

4.8. Trie - Prefix Tree

Code
struct TrieNode {
    TrieNode *next[26] = {};
    bool isWord = false;
};

class Trie {
    TrieNode root;
    TrieNode* find(string s) {
        auto node = &root;
        for(char c : s) {
            if(!node->next[c - 'a']) return NULL;
            node = node->next[c - 'a'];
        }
        return node;
    }
    
public:
    void insert(string word) {
        auto node = &root;
        for(char c : word) {
            if(!node->next[c - 'a']) node->next[c - 'a'] = new TrieNode();
            node = node->next[c - 'a'];
        }
        node->isWord = true;
    }
    
    bool search(string word) {
        auto wordFind = find(word);
        return wordFind && wordFind->isWord == true;
    }
    
    bool startsWith(string prefix) {
        return find(prefix);
    }
};

5. Grid and Matrix

5.1. Moving in four directions in grid

int dirs[4][2] = {{0,1},{0,-1},{1,0},{-1,0}};

for (auto &dir : dirs) {
    int a = x + dir[0], b = y + dir[1];
    // Here x and y is our current location.
}

int dirs[8][2] = { {-1, -1}, {-1, 0}, {-1, 1}, {0, -1}, {0, 1}, {1, -1}, {1, 0}, {1, 1}};

for (auto &dir : dirs) {
     int a = x + dir[0];
     int b = y + dir[1];
}

5.2. Knight Moves in Chessboard

int dirs[8][2] = {{-2,1}, {-1,2}, {1,2}, {2,1}, {2,-1}, {1,-2}, {-1,-2}, {-2,-1}};

for (auto &dir : dirs) {
    int a = x + dir[0], b = y + dir[1];
    // Here x and y is our current location.
}

5.3. Diagonals of Matrix (Top Left to Bottom Right)

int M = 5, N = 3;
cout << "Lower Triangle Diagonals" << "\n";
for (int i = 0; i < M; ++i) {
    cout << "------\n";
    for (int x = i, y = 0; x < M && y < N; ++x, ++y) {
    cout << x << " " << y << "\n";
    }
}

cout << "-------\n";
cout << "Upper Triangle Diagonals" << "\n";
for (int j = 1; j < N; ++j) {
    vector<int> v;
    cout << "------\n";
    for(int x = 0, y = j; x < M && y < N; ++x, ++y) {
    cout << x << " " << y << "\n";
    }
}

5.4. Largest Square in Matrix With Only Ones

int maximalSquare(vector<vector<char>>& matrix) {
    int M = matrix.size();
    int N = matrix[0].size();
    
    int ans = 0;
    
    vector<vector<int>> mat(M, vector<int>(N));
    
    for(int i = 0; i < M; i++) {
        for(int j = 0; j < N; j++) {
            mat[i][j] = matrix[i][j] - '0';
        }
    }
    
    for(int i = 0; i < M; i++) {
        for(int j = 0; j < N; j++) {
            if(i > 0 && j > 0 && mat[i][j] != 0) {
                mat[i][j] = min({mat[i][j - 1], mat[i - 1][j], mat[i - 1][j - 1]}) + 1;
            }
            
            ans = max(ans, mat[i][j]);
        }
    }
    
    // For side of largest square
    // return ans

    // For area of largest square
    return ans * ans; 
}

5.5. Sudoku Box Pattern

int box[9][9] = {};
for(int i = 0; i < 9; i++) {
    for(int j = 0; j < 9; j++) {
    box[i][j] = (i / 3 ) * 3+ (j / 3);
    }
}

for(int i = 0; i < 9; i++) {
    for(int j = 0;j < 9; j++) {
    cout << box[i][j] << " ";
    }
    cout << "\n";
}

// Output
// 0 0 0 1 1 1 2 2 2 
// 0 0 0 1 1 1 2 2 2 
// 0 0 0 1 1 1 2 2 2 
// 3 3 3 4 4 4 5 5 5 
// 3 3 3 4 4 4 5 5 5 
// 3 3 3 4 4 4 5 5 5 
// 6 6 6 7 7 7 8 8 8 
// 6 6 6 7 7 7 8 8 8 
// 6 6 6 7 7 7 8 8 8

6. Sorting

6.1. Merge Sort in Linked List

class Solution {
    ListNode* splitList(ListNode *head) {
        ListNode dummy, *p = &dummy, *q = &dummy;
        dummy.next = head;
        while (q && q->next) {
            q = q->next->next;
            p = p->next;
        }
        auto next = p->next;
        p->next = NULL;
        return next;
    }
    ListNode *mergeList(ListNode *a, ListNode *b) {
        ListNode head, *tail = &head;
        while (a && b) {
            ListNode *node;
            if (a->val <= b->val) {
                node = a;
                a = a->next;
            } else {
                node = b;
                b = b->next;
            }
            tail->next = node;
            tail = node;
        }
        if (a) tail->next = a;
        if (b) tail->next = b;
        return head.next;
    }
public:
    ListNode* sortList(ListNode* head) {
        if (!head || !head->next) return head;
        auto b = splitList(head);
        return mergeList(sortList(head), sortList(b));
    }
};

7. Binary Search

7.1. Finding Pivot Element in Vector

int L = 0, R = nums.size() - 1, pivot;
while (L < R) {
    int M = L + (R - L) / 2;
    if (nums[M] < nums[R]) R = M;
    else L = M + 1;
}
pivot = L;

7.2. Binary Search - When middle goes out of range

int M = (L + R) / 2;
// signed integer overflow: 1063376696 + 2126753390 cannot be represented in type 'int'

int M = L + (R - L) / 2
// This will prevent overflowing.

8. Linked List

8.1. Manipulation of head and tail in Linked List

struct ListNode {

};

ListNode head, *tail = &head;
// Manipulate tail node here
return head.next;

// LeetCode - Merge Nodes In Between Zeros

8.2. Length of Linked List

int getLength(ListNode* head) {
    int length = 0;
    for(; head; head = head->next, length++);
    return length;
}

8.3. Reverse Linked List

ListNode* reverseList(ListNode* head) {
    ListNode *prev = new ListNode();
    
    
    while(head) {
        auto node = head;
        head = head->next;
        node->next = prev->next;
        prev->next = node;
    }
    
    return prev->next;
}

9. Priority Queue

9.1. Priority Queue with Comparator

auto cmp = [&](int a, int b){ return cnt[a] > cnt[b]; };
priority_queue<int, vector<int>, decltype(cmp)> pq(cmp);

// Here cnt stores the frequency of elements given in vector.

// LeetCode - Sort Array By Increasing Frequency
// LeetCode - Merge K Sorted Lists
// LeetCode - Sort Characters By Frequency
// LeetCode - Top K Frequent Elements
// LeetCode - Top K Frequent Words
// LeetCode - Reduce Array Size To Half

9.2. Priority Queue with Class Comparator

class Cmp {
public:
    bool operator() (const pair<int, int>& a, const pair<int, int>& b) const {
        return a.second < b.second;
    }
};

priority_queue<pair<int, int>, vector<pair<int, int>>, Cmp> q(m.begin(), m.end()); // Assume there is an `m` storing pairs of `value, frequency`.

9.3. Using Tuples in Priority Queue

typedef tuple <int, int, int> Item;

priority_queue<Item, vector<Item>, greater<>> pq;

// Getting items from tuple
int ele = get<0>(pq.top());
int a = get<1>(pq.top());
int b = get<2>(pq.top());

10. Dynamic Programming

10.1. Longest Increasing Subsequence - LIS

int LIS(vector<int> &a) {
    int n = a.size();
    vector<int> dp(n, 1e9);

    for(int i = 0; i < n; i++) {
        auto it = lower_bound(dp.begin(), dp.end(), a[i]);
        *it = a[i];
    }

    return lower_bound(dp.begin(), dp.end(), 1e9) - dp.begin();
}

10.2. Partial Sum

int N = A.size();
vector<int> pre(N + 1);
partial_sum(begin(A), end(A), begin(pre) + 1);
// Or simply
for (int i = 0; i < N; ++i) pre[i + 1] = pre[i] + A[i];

10.3. Minimum number of Coins

// Given an infinite supply of each denomination of Indian currency { 1, 2, 5, 10, 20, 50, 100, 200, 500, 2000 } and a target value N.
// Find the minimum number of coins and/or notes needed to make the change for Rs N. You must return the list containing the value of coins required. 

//{ Driver Code Starts
// Initial Template for C++

#include <bits/stdc++.h>
using namespace std;

// } Driver Code Ends
// User function Template for C++

class Solution{

public:

    vector<int> minPartition(int N)

    {

        vector<int> arr = {1,2,5,10,20,50,100,200,500,2000};

        vector<int> ans;

        long long last = arr.size() - 1;

        while(last >= 0){

            if(arr[last] <= N){

                N = N - arr[last];

                ans.push_back(arr[last]);

            }

            else{

                last --;

            }

        }

        return ans;

    }

};

//{ Driver Code Starts.

int main(){
    int t;
    cin>>t;
    while(t--){
        int N;
        cin>>N;
        
        Solution ob;
        vector<int> numbers = ob.minPartition(N);
        for(auto u: numbers)
            cout<<u<<" ";
        cout<<"\n";
    }
    return 0;
}
// } Driver Code Ends

// Input: N = 43
// Output: 20 20 2 1
// Explaination: 
// Minimum number of coins and notes needed 
// to make 43. 

11. Graphs

11.1. Can We Go From Source To Destination

vector<int> G[100];
vector<bool>seen;

void dfs(int v) {
    seen[v] = true;
    for (auto next_v : G[v]) { 
        if (seen[next_v]) continue;
        dfs(next_v);
    }
}

void solve() { 
    int N, M,s,t;
    cin >> N >> M >> s >> t;

    for (int i = 1; i <=M; ++i) {
        int a, b;
        cin >> a >> b;
        G[a].push_back(b);
    }

    seen.assign(100, false);
    dfs(s);

    if (seen[t]) {
        cout << "Yes" << endl;
    } else {
        cout << "No" << endl;
    }

}

11.2. Print Euler Tour

vector<int> adj[1000]; 
int vis[1000]; 
int Euler[2000]; 

void eulerTree(int u, int &indx)
{
    vis[u] = 1;
    Euler[indx++] = u;
    for (auto it : adj[u]) {
        if (!vis[it]) {
            eulerTree(it, indx);
            Euler[indx++] = u;
        }
    }
}
 
void printEulerTour(int root, int N)
{
    int index = 0;  
    eulerTree(root, index);
    for (int i = 0; i < (2*N-1); i++)
        cout << Euler[i] << " ";
}

void solve() {
    int n, m;
    cin >> n >> m;

    for(int i = 0; i < m; i++) {
        int , v;
        cin >> u >> v;
        adj[u].push_back(v);
        adj[v].push_back(u);
    }

    printEulerTour(1, n);
}

11.3. Breadth First Search

void bfs()
{
    int n, m;
    cin>> n >> m;
    vector<int> adj[n+1];
    memset(adj, 0, sizeof adj);

    for(int i = 0; i < m; i++)
    {
        int x, y;
        cin >> x >> y;
        adj[x].push_back(y);
        adj[y].push_back(x);
    }

    // Source Vertex
    int s = 1;
    
    queue<int> q;
    vector<bool> used(n+1);
    vector<int> d(n+1), p(n+1);

    q.push(s);
    used[s] = true;
    p[s] = -1;
    while (!q.empty()) {
        int v = q.front();
        q.pop();
        for (int u : adj[v]) {
            if (!used[u]) {
                used[u] = true;
                q.push(u);
                d[u] = d[v] + 1;
                p[u] = v;
            }
        }
    }

    // Check if there is any path between source vertex and vertex u.
    int u = 4;

    if (!used[u]) {
        cout << "No path!";
    } else {
        vector<int> path;
        for (int v = u; v != -1; v = p[v])
            path.push_back(v);
        reverse(path.begin(), path.end());
        cout << "Path: ";
        for (int v : path)
            cout << v << " ";
    }
}

// Problems
// LeetCode : 1971. Find if Path Exists in Graph

11.4. DFS - First and Last Order

vector<int> G[100];
vector<int> first_order;
vector<int> last_order;
vector<bool>seen;

void dfs(int v, int& first_ptr, int& last_ptr) {
    first_order[v] = first_ptr++;

    seen[v] = true; 
    for (auto next_v : G[v]) { 
        if (seen[next_v]) continue;
        dfs(next_v, first_ptr, last_ptr);
    }
    last_order[v] = last_ptr++;
}

void solve()
{ 
	int N, M; cin >> N >> M;

	for (int i = 1; i <=M; ++i) {
	    int a, b;
	    cin >> a >> b;
	    G[a].push_back(b);
	    G[b].push_back(a);
	}

	seen.assign(100, false);
	first_order.resize(100);
    last_order.resize(100);
	int first_ptr = 0, last_ptr = 0;
	dfs(0, first_ptr, last_ptr);

	for (int v = 0; v < N; ++v)
        cout << v << ": " << first_order[v] << ", " << last_order[v] << endl;
}

11.5. Dijkstra's Algorithm

const int N = 3e5 + 9;
int n, m;
vector<pair<int, int>> g[N];


// First parameter is source vertex and second is adjacency list
vector<long long> dijkstra(int s, vector<pair<int, int>> g[])
{
    priority_queue<pair<long long, int>, vector<pair<long long, int>>, greater<pair<long long, int>>> q;
    vector<long long> d(n + 1, 1e18); vector<bool> vis(n + 1, 0);
    q.push({0, s});
    d[s] = 0;
    while(!q.empty()){
        auto x = q.top(); q.pop();
        int u = x.second;
        if(vis[u]) continue; vis[u] = 1;
        for(auto y: g[u]){
            int v = y.first; long long w = y.second;
            if(d[u] + w < d[v]){
                d[v] = d[u] + w; q.push({d[v], v});
            }
        }
    }
    return d;
}

 
int u[N], v[N], w[N];
void solve()
{
	cin >> n >> m;
    for(int i = 1; i <= m; i++){
        cin >> u[i] >> v[i] >> w[i];
        g[u[i]].push_back({v[i], w[i]});
        g[v[i]].push_back({u[i], w[i]});
    }

    auto d1 = dijkstra(1, g);
    auto d2 = dijkstra(5, g);
    auto d3 = dijkstra(8, g);

    for(int i = 1; i <= n; i++) {
    	cout << d1[i] << " ";
    }
    cout << "\n";
    for(int i = 1; i <= n; i++) {
    	cout << d2[i] << " ";
    }
    cout << "\n";
    for(int i = 1; i <= n; i++) {
    	cout << d3[i] << " ";
    }
    cout << "\n";
}

// Input
// 8 13
// 1 2 2
// 1 3 9
// 2 3 7
// 2 4 8
// 3 5 3
// 4 5 2
// 5 6 1
// 1 7 3
// 7 8 2
// 8 5 3
// 7 6 6
// 8 3 2
// 1 8 8

// Output
// 0 2 7 10 8 9 3 5 
// 8 10 3 2 0 1 5 3 
// 5 7 2 5 3 4 2 0 

11.6. Lowest Common Ancestor

const int maxN = 2e5 + 1;
const int logN = 20;

int p[maxN][logN];
int timer, in[maxN], out[maxN];
vector<int> G[maxN];

void dfs(int u = 1, int par = 1) {
	in[u] = ++timer;
	p[u][0] = par;
	for(int i = 1; i < logN; i++) {
		p[u][i] = p[p[u][i-1]][i - 1];
	}
	for(int v: G[u]) {
		if(v != par) {
			dfs(v, u);
		}
	}
	out[u] = ++timer;
}

bool ancestor(int u, int v) {
	return in[u] <= in[v] && out[u] >= out[v];
}

int lca(int u, int v) {
	if(ancestor(u, v)) return u;
	if(ancestor(v, u)) return v;

	for(int i = logN - 1; i >= 0; i--) {
		if(!ancestor(p[u][i] , v)) {
			u = p[u][i];
		}
	}
	return p[u][0];
}

void solve()
{
	int N, M, Q, x, y, a, b;
	cin >> N >> M >> Q;
	for(int i = 2; i <= N; i++) {
		cin >> x >> y;
		G[x].push_back(y);
		G[y].push_back(x);
	}

	dfs();

	for(int q = 0; q < Q; q++) {
		cin >> a >> b;
		cout << lca(a, b) << "\n";
	}
}

// Input
// 11 10 4
// 1 2
// 2 3
// 3 4
// 3 5
// 4 6
// 4 7
// 5 9
// 2 8
// 8 10
// 8 11
// 11 6
// 7 9
// 4 9
// 6 7

// Output
// 2
// 3
// 3
// 4

11.7. Number of Connected Components

vector<int> G[100];

vector<bool> seen;
void dfs(int v) {
    seen[v] = true;
    for (auto next_v : G[v]) { 
        if (seen[next_v]) continue;
        dfs(next_v); 
    }
}


void solve()
{ 
    int N, M; cin >> N >> M;

    for (int i = 1; i <=M; ++i) {
        int a, b;
        cin >> a >> b;
        G[a].push_back(b);
        G[b].push_back(a);
    }

    int count = 0;
    seen.assign(100, false);
    for (int v = 1; v <=N; ++v) {
        if (seen[v]) continue; // Through if v has been searched
        dfs(v); // If v is unsearched, perform DFS starting from v
        ++count;
    }
    cout << count << endl;
}

11.8. Kruskal Algorithm - Minimum Spanning Tree

class UnionFind {
    vector<int> id;
    int size;
public:
    UnionFind(int N) : id(N), size(N) {
        iota(begin(id), end(id), 0);
    }
    int find(int a) {
        return id[a] == a ? a : (id[a] = find(id[a]));
    }
    void connect(int a, int b) {
        int p = find(a), q = find(b);
        if (p == q) return;
        id[p] = q;
        --size;
    }
    bool connected(int a, int b) {
        return find(a) == find(b);
    }
    int getSize() { return size; }
};
class Solution {
public:
    int minCostConnectPoints(vector<vector<int>>& A) {
        int N = A.size(), ans = 0;
        vector<array<int, 3>> E;
        for (int i = 0; i < N; ++i) {
            for (int j = i + 1; j < N; ++j) E.push_back({ abs(A[i][0] - A[j][0]) + abs(A[i][1] - A[j][1]), i, j });
        }
        make_heap(begin(E), end(E), greater<array<int, 3>>());
        UnionFind uf(N);
        while (uf.getSize() > 1) {
            pop_heap(begin(E), end(E), greater<array<int, 3>>());
            auto [w, u, v] = E.back();
            E.pop_back();
            if (uf.connected(u, v)) continue;
            uf.connect(u, v);
            ans += w;
        } 
        return ans;
    }
};

Problems
// LeetCode - Min Cost To Connect All Pairs
// LeetCode - Connecting Cities With Minimum Cost
// LeetCode - K Closest Points To Origin

11.9. Euler path - Heirholzer Algorithm

// LeetCode Problem - Valid Arrangement of Pairs
vector<vector<int>> validArrangement(vector<vector<int>>& E) {
    int N = E.size();
    unordered_map<int, vector<int>> G;
    unordered_map<int, int> indegree, outdegree;
    G.reserve(N);
    indegree.reserve(N);
    outdegree.reserve(N);
    for (auto &e : E) {
        int u = e[0], v = e[1];
        outdegree[u]++;
        indegree[v]++;
        G[u].push_back(v);
    }
    int start = -1;
    for (auto &[u, vs] : G) {
        if (outdegree[u] - indegree[u] == 1) {
            start = u; // If there exists one node `u` that `outdegree[u] = indegree[u] + 1`, use `u` as the start node.
            break;
        }
    }
    if (start == -1) start = E[0][0]; // If there doesn't exist such node `u`, use any node as the start node
    vector<vector<int>> ans;
    function<void(int)> euler = [&](int u) {
        auto &vs = G[u];
        while (vs.size()) {
            int v = vs.back();
            vs.pop_back();
            euler(v);
            ans.push_back({ u, v }); // Post-order DFS. The edge is added after node `v` is exhausted
        }
    };
    euler(start);
    reverse(begin(ans), end(ans)); // Need to reverse the answer array in the end.
    return ans;
}

11.10. Bipartite Graph

bool isBipartite(vector<vector<int>>& G) {
    vector<int> id(G.size());
    function<bool(int, int)> dfs = [&](int u, int prev) {
        if (id[u]) return id[u] != prev; // This node's part should be the same as the part of the previous part
        id[u] = -prev; // Assign nodes to one of the two parts, -1 or 1
        for (int v : G[u]) {
            if (!dfs(v, id[u])) return false;
        }
        return true;
    };
    for (int i = 0; i < G.size(); ++i) {
        if (id[i]) continue; // This node is already assigned to a part
        if (!dfs(i, 1)) return false;
    }
    return true;
}

11.11. Bellman Ford Algorithm

vector<int> bellmanFord(vector<vector<int>>& edges, int V, int src) {
    vector<int> dist(N, INT_MAX);
    dist[src] = 0;
    for (int i = 1; i < V; ++i) { // try to use all the edges to relax for V-1 times.
        for (auto &e : edges) {
            int u = e[0], v = e[1], w = e[2];
            if (dist[u] == INT_MAX) continue;
            dist[v] = min(dist[v], dist[u] + w); // Try to use this edge to relax the cost of `v`.
        }
    }
    return dist;
}

11.12. Topological Sort

Code
vector<int> topologicalSort(int k, vector<vector<int>> &A) {
    vector<int> deg(k, 0), order; // Degree
    vector<vector<int>> G(k, vector<int>(0));// Creation of graph
    
    for(auto &c : A) {
        int u = c[0], v = c[1];
        G[u - 1].push_back(v - 1);
        deg[v - 1]++;
    }
    
    queue<int> q;

    for(int i = 0; i < k; i++) {
        if(deg[i] == 0) {
            q.push(i);// Push node with indegree zero.
        }
    }
    
    while(q.size()) {
        int x = q.front();
        q.pop();
        
        order.push_back(x + 1);
        
        for(int &u : G[x]) {
            if(--deg[u] == 0) {
                q.push(u);
            }
        }
    }
    
    return order;
}


⬆ Back to top

12. Recursion

12.1. Maximum Digit in Number

int maxDigitInNumber(int n) {
    if(n < 10) return n;
    return max( maxDigitInNumber(n / 10), n % 10);
}

13. Binary Trees

13.1. Find Path From Root To Target Node

// It will store the path in vector passed to this function.
bool findPath(TreeNode *node, TreeNode *target, vector<TreeNode*> &path) {
    if (!node) return false;
    path.push_back(node);
    if (node == target) return true;
    if (findPath(node->left, target, path) || findPath(node->right, target, path)) return true;
    path.pop_back();
    return false;
}

14. String

14.1. stringstream Implementation

stringstream ss;
ss << "Kiranpal Singh";

cout << ss.str() << "\n";

// We can also extract words from a string, perform some operation on each word 
stringstream ss(sentence);
string word, ans;
while(ss >> word) {
    ans += performOperation(word) + " ";
}

// https://leetcode.com/problems/apply-discount-to-prices/

14.2. Rabin Karp Algorithm

string s,t;
//t -> text s-> pattern

vector<int> rabin_karp(string const& s, string const& t) {
    const int p = 31; 
    const int m = 1e9 + 9;
    int S = s.size(), T = t.size();

    vector<long long> p_pow(max(S, T)); 
    p_pow[0] = 1; 
    for (int i = 1; i < (int)p_pow.size(); i++) 
        p_pow[i] = (p_pow[i-1] * p) % m;

    vector<long long> h(T + 1, 0); 
    for (int i = 0; i < T; i++)
        h[i+1] = (h[i] + (t[i] - 'a' + 1) * p_pow[i]) % m; 
    long long h_s = 0; 
    for (int i = 0; i < S; i++) 
        h_s = (h_s + (s[i] - 'a' + 1) * p_pow[i]) % m; 

    vector<int> occurences;
    for (int i = 0; i + S - 1 < T; i++) { 
        long long cur_h = (h[i+S] + m - h[i]) % m; 
        if (cur_h == h_s * p_pow[i] % m)
            occurences.push_back(i);
    }
    return occurences;
}

void solve()
{
    cin >> t >> s;
    ll n = s.length();

    // Prints the vector of indices where pattern is matched in text.
    auto a = rabin_karp(s, t);
    for(auto &ele: a) {
        cout << ele << " ";
    }
    cout << "\n";
}

//Input
// abcdeaabcfgabc abc
// Output
// 0 6 11

14.3. Reverse binary string using XOR operator

string s = "01010011";  
for(char &c : s) {
    c ^= '0' ^ '1';
}

cout << "s: " << s << "\n";
// s: 10101100

// Problems
// CodeChef - K Flip (KLIP)

14.4. Z Function - Prefix Function

vector<int> z_function(string s) {
    int n = (int) s.length();
    vector<int> z(n);
    for (int i = 1, l = 0, r = 0; i < n; ++i) {
        if (i <= r)
            z[i] = min (r - i + 1, z[i - l]);
        while (i + z[i] < n && s[z[i]] == s[i + z[i]])
            ++z[i];
        if (i + z[i] - 1 > r)
            l = i, r = i + z[i] - 1;
    }
    return z;
}

14.5. Adding numbers in string

string addStr(const string& a, const string& b) {
	int as = (int)a.size() - 1;
	int bs = (int)b.size() - 1;
	string res;
	int carry = 0;
	for (int i = 0;; ++i) {
		int v = carry;
		carry = 0;
		if (i <= as) v += a[as-i] - '0';
		if (i <= bs) v += b[bs-i] - '0';
		if (v >= 10) {
			v -= 10;
			carry = 1;
		}
		if (i > as && i > bs && v == 0) break;
		res.push_back(v + '0');
	}
	reverse(res.begin(), res.end());
	return res;
}


void solve()
{
	string a, b;
	cin >> a >> b;

	string ans = addStr(a, b);
	cout << ans << "\n";
}

// Input
// 5555
// 4444

// Output
// 9999

14.6. Longest Prefix Suffix

// Longest prefix which is also suffix
// The prefix and suffix should not overlap
vector<int> computeLPS(string t) {
	int m = t.length();
    vector<int> lps(m);
 
    int i = 1, len = 0;
    lps[0] = 0;
 
    while (i < m) {
        if (t[i] == t[len]) {
            len++;
            lps[i] = len;
            i++;
        }
        else {
            if (len != 0) {
                len = lps[len - 1];
            }
            else {
                lps[i] = 0;
                i++;
            }
        }
    }
    return lps;
}

void solve()
{
	string a, b;
    cin >> a >> b;  

    auto A = computeLPS(a);
    auto B = computeLPS(b);

    for(auto &a: A) {
        cout << a << " ";
    }
    cout << "\n";

    for(auto &b: B) {
        cout << b << " ";
    }
    cout << "\n";
}

// Input
// abcdabcdabcd
// abcdefabcdefabcdef
// Output
// 0 0 0 0 1 2 3 4 5 6 7 8 
// 0 0 0 0 0 0 1 2 3 4 5 6 7 8 9 10 11 12 

14.7. Euler Phi Function

vector< int > euler_phi_table(int n) {
  vector< int > euler(n + 1);
  for(int i = 0; i <= n; i++) {
    euler[i] = i;
  }
  for(int i = 2; i <= n; i++) {
    if(euler[i] == i) {
      for(int j = i; j <= n; j += i) {
        euler[j] = euler[j] / i * (i - 1);
      }
    }
  }
  return euler;
}

template< typename T >
T euler_phi(T n) {
  T ret = n;
  for(T i = 2; i * i <= n; i++) {
    if(n % i == 0) {
      ret -= ret / i;
      while(n % i == 0) n /= i;
    }
  }
  if(n > 1) ret -= ret / n;
  return ret;
}

void EulerPhiDemo(int n) {
  int countPhi = 0;
  vector<int> whichNum;
  for(int i = 0; i <= n; i++) {
    if(gcd(i, n) == 1) {
      whichNum.push_back(i);
      countPhi++;
    }
  }
  cout << "Euler Phi of " << n << " : " << countPhi << "\n";
  cout << "The numbers are : ";
  for(auto &a: whichNum){
    cout << a << " ";
  }
  cout << "\n";
}

void solve()
{
	auto eulerTable = euler_phi_table(100);
	for(auto &a: eulerTable) {
		cout << a << " ";
	}
	cout << "\n";

	auto eulerNumber = euler_phi(20);
	cout << eulerNumber << "\n";

  EulerPhiDemo(5);
  EulerPhiDemo(11);
  EulerPhiDemo(20);
}

// Output
// Euler Phi Table
// 0 1 1 2 2 4 2 6 4 6 4 10 4 12 6 8 8
// 16 6 18 8 12 10 22 8 20 12 18 12 28
// 8 30 16 20 16 24 12 36 18 24 16 40
// 12 42 20 24 22 46 16 42 20 32 24 
// 52 18 40 24 36 28 58 16 60 30 36
// 32 48 20 66 32 44 24 70 24 72 36
// 40 36 60 24 78 32 54 40 82 24 64
// 42 56 40 88 24 72 44 60 46 72 32
// 96 42 60 40 

// Euler Phi Number
// 8

// Euler Phi Demo
// Euler Phi of 5 : 4
// The numbers are : 1 2 3 4 
// Euler Phi of 11 : 10
// The numbers are : 1 2 3 4 5 6 7 8 9 10 
// Euler Phi of 20 : 8
// The numbers are : 1 3 7 9 11 13 17 19 

15. STL

15.1. Finding if element inserted in set or not

set<int> S;
int N = 6;
for(int i = 0; i < N; i++) {
    int x; cin >> x;
    if(S.insert(x).second) {
        cout << "New Element is inserted :)" << "\n";
    } else {
        cout << "Element already exists  :(" << "\n";
    }
}

// Input = 1 2 3 4 2 5
// Output: 
// New Element is inserted :)
// New Element is inserted :)
// New Element is inserted :)
// New Element is inserted :)
// Element already exists  :(
// New Element is inserted :)

16. Lambda Function

16.1. Definition of Lambda Function

// Void Lambda Function
function<void(int, int)> dfs = [&](int start, int goal) {
    // Write your code here.          
};

16.2. Lambda Function to Check if Vector is Permutation

int n = 6;
auto isPermutation = [&](const vector<int> &A)->bool{
    vector<int> vis(n + 1, false);
    for(auto x : A){
        if(x <= 0 || x > n || vis[x])
            return false;
        vis[x] = true;
    }
    return true;
};

vector<int> A = {1, 2, 3, 4, 5, 1};
vector<int> B = {3, 4, 5, 6, 1, 2};

if(isPermutation(A)) {
    cout << "Vector A is permutation" << "\n";
}
if(isPermutation(B)) {
    cout << "Vector B is permutation" << "\n";
}

17. Heaps

17.1. Max Heap and Min Heap

// Minimum heap and Maximum heap
void solve()
{
	priority_queue<int, vector<int>, greater<int> > minHeap;
	priority_queue<int, vector<int> > maxHeap;

	int n, x;
	cin >> n;
	for(int i = 0; i < n; i++) {
		cin >> x;
		minHeap.push(x);
		maxHeap.push(x);
	}

	auto a = minHeap;
	while(!a.empty()) {
		cout << a.top() << " ";
		a.pop();
	}
	cout << "\n";

	auto b = maxHeap;
	while(!b.empty()) {
		cout << b.top() << " ";
		b.pop();
	}
	cout << "\n";
}

// Input
// 8
// 1 5 2 19 23 9 7 33
// Output
// 1 2 5 7 9 19 23 33 
// 33 23 19 9 7 5 2 1 

17.2. Convert Vector to Heaps in C++

vector<array<int, 3>> E;

make_heap(begin(E), end(E), greater<array<int, 3>>());
pop_heap(begin(E), end(E), greater<array<int, 3>>());

// Now the smallest element in Heap is at the back of vector E.
auto [w, u, v] = E.back();
E.pop_back()

Problems

  1. Min Cost To Connect All Pairs

18. Permutation

18.1. Next Permutation

void solve()
{
	string s;
	cin >> s;
	sort(s.begin(), s.end());

	do {
		cout << s << "\n";
	} while(next_permutation(s.begin(), s.end()));
}

// Input
// abcd

// Ouput
// abcd
// abdc
// acbd
// acdb
// adbc
// adcb
// bacd
// badc
// bcad
// bcda
// bdac
// bdca
// cabd
// cadb
// cbad
// cbda
// cdab
// cdba
// dabc
// dacb
// dbac
// dbca
// dcab
// dcba

19. Mathematics

19.1. Chicken McNugget Theorem

/* The Chicken McNugget Theorem states that for any two relatively prime positive
integers m and n, the greatest integer that cannot that cannot be written
in the form a*m + b *n for non-negative integers a, b is mn - m - n.  */

bool chickenMcNuggetTheorem(int m, int n, int number) {
	for(int i = 0; i <= 10; i++) {
		int y = number - i * n;
		if(y >= 0 && y % m == 0) {
			return true;
		}	
	}
	return false;
}

bool chickenMcNuggetTheoremModified(int m, int n, int number) {
	if(number >= n * (number % m)) {
		return true;
	} else {
		return false;
	}
}

void solve()
{
	int t, n;
	cin >> t;
	while(t--) {
		cin >> n;
		if(chickenMcNuggetTheoremModified(11, 111, n)) {
			cout << "YES" << "\n";
		} else {
			cout << "NO" << "\n";
		}
	}
}

// Input
// 3
// 33
// 144
// 69

// Output
// YES
// YES
// NO

19.2. Sum of Two Numbers with Given Base

// Returns sum of two numbers a and b with given base 
int sumWithBase(string a, string b, int base)
{
    int len_a, len_b;
 
    len_a = a.size(); len_b = b.size();
 
    string sum, s;
    s = "";
    sum = "";
 
    int diff;
    diff = abs(len_a - len_b);
 
    for (int i = 1; i <= diff; i++) s += "0";
 
    if (len_a < len_b) a = s + a;
    else b = s + b;
 
    int curr, carry = 0;
 
    for (int i = max(len_a, len_b) - 1; i > -1; i--) 
    {
        curr = carry + (a[i] - '0') + (b[i] - '0');
        carry = curr / base;
        curr = curr % base;
        sum = (char)(curr + '0') + sum;
    }

    if (carry > 0) sum = (char)(carry + '0') + sum;
    
    int ans = stoi(sum);
    return ans;
}

void solve()
{
    string a, b;
    cin >> a >> b;
    cout << sumABwithBase(a, b, 10);
}

// Input
// 11 12
// Output
// 23

19.3. Check if number N if power of X

// We have to check the log N base to X is integer. We can check that with fmod.
// We can take X to be any number. For example 2, 3, 4 ...

bool isPowerOfTwo(int n) {
    return fmod(log10(n) / log10(2), 1) == 0;
}

bool isPowerOfThree(int n) {
    return fmod(log10(n) / log10(3), 1) == 0;
}

bool isPowerOfFour(int n) {
    return fmod(log10(n) / log10(4), 1) == 0;
}

19.4. Base Equivalence

// Given a number (n) and no. of digits (m) to represent the number, we have to check if we can represent n using exactly m digits in any base from 2 to 32.

	class Solution {

  public:

    string baseEquiv(int n, int m){

        for (int i=2; i<=32; i++){

            if ( pow(i,m-1) > n ) continue;

            if (pow(i,m) > n) return "Yes" ;

        }

        return "No" ;

    }

};
	
// Input: n = 8, m = 3
// Output: No
// Explanation: Not possible in any base. 

19.5. Jumping Numbers

// Given a positive number X. Find the largest Jumping Number which is smaller than or equal to X. 

	class Solution {
  public:
   
    #define ll long long
    ll ans=0;
    void fun(ll n, ll x){
        if(n>x)return ;
        ans=max(ans, n);
        int ls=n%10;
        ll nn=n;
        if(ls==0){
            nn=10*n+ls+1;
            fun(nn, x);
        }else if(ls==9){
            nn=10*n+ls-1;
            fun(nn, x);
        }else{
            nn=10*n+ls+1;
            fun(nn, x);
            nn=10*n+ls-1;
            fun(nn, x);
        }
    }
    long long jumpingNums(long long x) {
        for(int i=0;i<=9;i++){
            fun(i, x);
        }
        return ans;
    }
};

//  Input:
// X = 10
// Output:
// 10

20. Prime Numbers

20.1. Prime Numbers in Range

const ll MAXN = 1e7;
bool comp[MAXN + 10];
vector<ll> primeVec;

void sieveOfEratosthenes()
{
   for(int i = 2; i <= MAXN; i++){
        if(comp[i]) continue;
        primeVec.pb(i);        
        for(int j = 2 * i; j <= MAXN; j += i){
            comp[j] = true;
        }
    }
}

int L,R;

void solve()
{
    // Implementation
    sieveOfEratosthenes();
    cin >> L >> R;
    // For finding prime numbers in range L,R
    ll rangeAns = (upper_bound(primeVec.begin(), primeVec.end(), R)
                 - upper_bound(primeVec.begin(), primeVec.end(), L));

    cout << rangeAns;
}

// Input - > 1 100
// Output -> 25 (25 Prime numbers between 2 and 100 inclusive)

21. Base Conversion

21.1. Convert To Decimal From Base K

int convertToDecimal(string s, int k) {
  int ans = 0;
  for(char x: s) {
    ans *= k;
    ans += x - '0';
  } return ans;
}

int main(){
    int k;
    string a,b;
    cin >> k >> a >> b;
    int A = convertToDecimal(a, k);
    int B = convertToDecimal(b, k);
    cout << A*B << endl;
    return 0;
}

22. GCD and LCM

22.1. Maximum GCD in range [L, R]

// Finding maximum gcd of two numbers a and b in range [L, R]
// in O(n) time instead of O(n ^ 2) time.
	// cin >> L >> R;
int maxGCD = -1e9;
int operations = 0;

for(int i = L; i <= R; i++) {
	for(int j = i + 1; j <= R; j++) {
		maxGCD = max(maxGCD, int(gcd(i, j)));
		operations++;
	}
}

cout << maxGCD << "\n";
int modifiedOperations = 0;

for(int c = R; c > 0; c--) {
	modifiedOperations++;
	if((L + c - 1) / c < R / c) {
		cout << c << "\n";
		goto end;
	}
}
end:;

cout << operations << "\n";
cout << modifiedOperations << "\n";

// Input
// 100 279
// Output
// 139
// 139
// 16110
// 141

22.2. Dirichlet's Convolution

namespace Dirichlet {
  const int T = 1e6 + 9;
  long long phi[T];
  gp_hash_table<long long, long long> mp;
  long long dp[T], inv;
  int sz, spf[T], prime[T];
  void init() {
      memset(spf, 0, sizeof spf);
      phi[1] = 1; sz = 0;
      for (int i = 2; i < T; i++) {
          if (spf[i] == 0) phi[i] = i - 1, spf[i] = i, prime[sz++] = i;
          for (int j = 0; j < sz && i * prime[j] < T && prime[j] <= spf[i]; j++) {
              spf[i * prime[j]] = prime[j];
              if (i % prime[j] == 0) phi[i * prime[j]] = phi[i] * prime[j];
              else phi[i * prime[j]] = phi[i] * (prime[j] - 1);
          }
      }
      dp[0] = 0;
      for(int i = 1; i < T; i++) dp[i] = dp[i - 1] + phi[i];
      inv = 1; // g(1)
  }
  long long p_c(long long n) {
      if (n % 2 == 0) return n / 2 * ((n + 1));
      return (n + 1) / 2 * (n);
  }
  long long p_g(long long n) {
      return n;
  }
  long long solve (long long x) {
      if (x < T) return dp[x];
      if (mp.find(x) != mp.end()) return mp[x];
      long long ans = 0;
      for (long long i = 2, last; i <= x; i = last + 1) {
          last = x / (x / i);
          ans += solve (x / i) * (p_g(last) - p_g(i - 1));
      }
      ans = p_c(x) - ans;
      ans /= inv;
      return mp[x] = ans;
  }
}

// Find number of pairs (a, b) such that a <= b <= N and gcd(a, B) = X

int main() {
    int n, x; cin >> n >> x;
    cout << solve(n / x) << '\n';
}

22.3. Euler Totient Function

#define int long long
#define maxn 1500001
int phi[maxn];
int s_phi[maxn];
void pre()
{
    int i,j;
    for(i=1;i<maxn;i++)
        phi[i] = i;
    s_phi[1] = 1;
    for(i=2;i<maxn;i++)
    {
        if(phi[i] == i)
        {
            for(j=i;j<maxn;j=j+i)
                phi[j] = (phi[j]/i)*(i-1);
        }
        s_phi[i] = s_phi[i-1] + phi[i];    
    }
}
int func(int n)
{
    if(n < maxn)
       return s_phi[n]; 
    int g;
    int x = sqrt(n);
    int sum = 0;
    for(g=2;g<=x;g++)
    {
        sum = sum + func(n/g);
    }
    x = n/(x+1);
    for(g=1;g<=x;g++)
        sum = sum + s_phi[g]*(n/g - n/(g+1));
    sum = n*(n+1)/2 - sum;
    return sum;    
}

// Find number of pairs (a, b) such that a <= b <= N and gcd(a, B) = X

signed main() {
    ios_base::sync_with_stdio(false);
    cin.tie(0);
    int t = 1;
    pre();
    //cin >> t;
    while(t--){
        int N, X;
        cin >> N >> X;
        cout << func(N/X);
    }
}

23. Geometry

23.1. Point Structure in Geometry

typedef double T;
struct pt {
	T x, y;
	pt operator+ (pt p) {
		return {x + p.x, y + p.y};
	}

	pt operator- (pt p) {
		return {x - p.x, y - p.y};
	}

	pt operator* (T d) {
		return { x * d, y * d};
	}

	pt operator/ (T d) {
		return {x/d, y/d};
	}
};

bool operator==(pt a, pt b) {
	return a.x == b.x && a.y == b.y;
}

bool operator!= (pt a, pt b) {
	return !(a == b);
}

T sq(pt p) {
	return p.x * p.x + p.y * p.y;
}

double abs(pt p) {
	return sqrt(sq(p));
}

ostream& operator<< (ostream& os, pt p) {
	return os << "(" << p.x << "," << p.y << ")";
}

void solve()
{
    pt a, b;
    cin >> a.x >> a.y >> b.x >> b.y;
    cout << a+b << " " << a-b << "\n"; 
    cout << a*-1 << " " << b/2 << "\n"; 

    pt c;
    cin >> c.x >> c.y;
    cout << abs(c) << "\n";
}

// Input
// 3 4
// 2 -1
// -5 -10

// Output
// (5,3) (1,5)
// (-3,-4) (1,-0.5)
// 11.1803

24. Mathematical Equations

24.1. Find x and y in a.x + b.y = N

void equation(int a, int b, int n) {
    for (int i = 0; i * a <= n; i++) {
        if ((n - (i * a)) % b == 0) {
            cout << "x = " << i << ", y = " << (n - (i * a)) / b;
            return;
        }
    }
    cout << "No solution exists." << "\n";
}

25. Miscellaneous

25.1. Numeric Limits

long long a = numeric_limits<long long>::max();
int b = numeric_limits<int>::max();

25.2. Median of an array

int median(vector<int> &A) {
	sort(A.begin(), A.end());
	int N = A.size();

	cout << "Size : " << N << "\n"; 

	for(auto a : A) {
			cout << a << " ";
	}
	cout << "\n";

	if(N % 2 == 0) {
		return A[(N - 2) / 2];
	}

	return A[(N - 1) / 2];
}

25.3. Reverse a number

int rev(int n) {
  string s = to_string(n);
  reverse(s.begin(), s.end());
  
  return stoi(s);
}

int rev2(int x) {
    int b = 0;
    while (a > 0) {
        b = b * 10 + (a % 10);
        a /= 10;
    }
    return b;
}

int main() 
{
    int n = 988;
    int m = 930;
    
    cout << rev(n) << "\n";
    cout << rev(m) << "\n";
}

25.4. Generating Random Numbers in Range

mt19937 rng{random_device{}()};
uniform_real_distribution<double> uni{0, 1};
// It will generate the random numbers every time in given range
// cout << uni(rng) << "\n";

25.5. Grouping Of Numbers

// One day Jim came across array arr[] of N numbers. He decided to divide these N numbers into different groups. 
// Each group contains numbers in which sum of any two numbers should not be divisible by an integer K. 
// Print the size of the group containing maximum numbers.	
		//{ Driver Code Starts
//Initial Template for C++

#include <bits/stdc++.h>
using namespace std;

// } Driver Code Ends
//User function Template for C++

class Solution {
  public:
   int maxGroupSize(int a[], int n, int k) {

        int count=0;

        unordered_map<int,int> mp;

        for(int i=0;i<n;i++){

            mp[a[i]%k]++;

        }

        if(mp.find(0)!=mp.end()) mp[0]=1;

        for(auto x:mp){

            if(mp.find(k-x.first)!=mp.end()){

                if(x.first==k-x.first) mp[x.first]=1;

                count+=max(mp[k-x.first],mp[x.first]);

                mp[k-x.first]=0;mp[x.first]=0;

            }

            else{

                count+=mp[x.first];

                mp[x.first]=0;

            }

        }

        return count;

    }
};

//{ Driver Code Starts.
int main() {
    int t;
    cin >> t;
    while (t--) {
        int N,K;
        
        cin>>N>>K;
        int arr[N];
        
        for(int i=0; i<N; i++)
            cin>>arr[i];

        Solution ob;
        cout << ob.maxGroupSize(arr,N,K) << endl;
    }
    return 0;
}

// Input:
// N = 4, K = 8
// arr[] = {1, 7, 2, 6}
// Output:
// 2
Template


⬆ Back to top

About

Code Snippets for Data Structures and Algorithms. Problems from LeetCode, Codeforces and CodeChef for practice.

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published